File size: 5,267 Bytes
8c6e7c5 f42ec5a bab14db ab2a252 8c6e7c5 4feba72 8c6e7c5 bab14db 4feba72 d9e6889 bab14db d9e6889 bab14db 528ca22 bab14db 528ca22 109c33b d9e6889 528ca22 d9e6889 528ca22 cee7ab0 1d32dc8 204fce4 7c7b3f8 a9c965c d9e6889 bab14db d9e6889 bab14db d9e6889 bab14db d9e6889 43fb3cd 1c8f41a d9e6889 bab14db 8ad640d e29972d bad033a b261b5b bad033a d9e6889 06807eb bad033a f422761 b61e7ea bad033a f422761 b61e7ea bad033a b61e7ea f422761 bad033a e29972d f422761 7c7b3f8 e29972d 9cb8f94 e29972d b61e7ea f422761 e29972d 940edf8 f422761 940edf8 e29972d b61e7ea f422761 e29972d b61e7ea f422761 e29972d f422761 e29972d 940edf8 f422761 8ac821c e29972d 940edf8 f422761 8ac821c e29972d f422761 e29972d 940edf8 f422761 8ac821c e29972d bad033a 1c8f41a 8a54a11 bad033a 1c8f41a d9e6889 e29972d d9e6889 da3e071 d9e6889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
language:
- en
- fr
- es
- pt
tags:
- falcon3
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
---
# Falcon3-7B-Base
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
This repository contains the **Falcon3-7B-Base**. It achieves state-of-the-art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-7B-Base supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
## Model Details
- Architecture
- Transformer-based causal decoder-only architecture
- 28 decoder blocks
- Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
- Wider head dimension: 256
- High RoPE value to support long context understanding: 1000042
- Uses SwiGLU and RMSNorm
- 32K context length
- 131K vocab size
- Pretrained on 14 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
## Getting started
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="tiiuae/Falcon3-7B-Base",
torch_dtype=torch.bfloat16,
device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])
```
</details>
<br>
## Benchmarks
We report in the following table our internal pipeline benchmarks:
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Category</th>
<th>Benchmark</th>
<th>Llama3.1-8B</th>
<th>Qwen2.5-7B</th>
<th>gemma-2-9b</th>
<th>Falcon3-7B-Base</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">General</td>
<td>MMLU (5-shot)</td>
<td>65.2</td>
<td><b>74.2</b></td>
<td>70.8</td>
<td>67.5</td>
</tr>
<tr>
<td>MMLU-PRO (5-shot)</td>
<td>32.7</td>
<td><b>43.5</b></td>
<td>41.4</td>
<td>39.2</td>
</tr>
<tr>
<td>IFEval</td>
<td>12.0</td>
<td>33.9</td>
<td>21.2</td>
<td><b>34.3</b></td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>GSM8K (5-shot)</td>
<td>49.4</td>
<td><b>82.9</b></td>
<td>69.1</td>
<td>76.2</td>
</tr>
<tr>
<td>MATH Lvl-5 (4-shot)</td>
<td>4.1</td>
<td>15.5</td>
<td>10.5</td>
<td><b>18.0</b></td>
</tr>
<tr>
<td rowspan="4">Reasoning</td>
<td>Arc Challenge (25-shot)</td>
<td>58.2</td>
<td>63.2</td>
<td><b>67.5</b></td>
<td>63.1</td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td>31.0</td>
<td>33.0</td>
<td>33.4</td>
<td><b>35.5</b></td>
</tr>
<tr>
<td>MUSR (0-shot)</td>
<td>38.0</td>
<td>44.2</td>
<td>45.3</td>
<td><b>47.3</b></td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td>46.5</td>
<td>54.0</td>
<td><b>54.3</b></td>
<td>51.0</td>
</tr>
<tr>
<td rowspan="4">CommonSense Understanding</td>
<td>PIQA (0-shot)</td>
<td>81.2</td>
<td>79.9</td>
<td><b>82.9</b></td>
<td>79.1</td>
</tr>
<tr>
<td>SciQ (0-shot)</td>
<td>94.6</td>
<td>95.2</td>
<td><b>97.1</b></td>
<td>92.4</td>
</tr>
<tr>
<td>Winogrande (0-shot)</td>
<td>74.0</td>
<td>72.9</td>
<td><b>74.2</b></td>
<td>71.0</td>
</tr>
<tr>
<td>OpenbookQA (0-shot)</td>
<td>44.8</td>
<td>47.0</td>
<td><b>47.2</b></td>
<td>43.8</td>
</tr>
</tbody>
</table>
## Technical Report
Coming soon....
## Citation
If Falcon3 family were helpful to your work, feel free to give us a cite.
```
@misc{Falcon3,
title = {The Falcon 3 family of Open Models},
author = {TII Team},
month = {December},
year = {2024}
}
``` |