File size: 3,564 Bytes
8c6e7c5 f42ec5a bab14db 8c6e7c5 bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a 24619a8 bab14db f42ec5a bab14db f42ec5a bab14db 43fb3cd bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db f42ec5a bab14db 43fb3cd bab14db f42ec5a bab14db f42ec5a bab14db 8ad640d 063d93b 66224d2 7678874 063d93b 66224d2 063d93b 7678874 063d93b 66224d2 063d93b 7678874 063d93b bab14db f42ec5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language:
- en
tags:
- falcon3
---
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
# TL;DR
# Model Details
## Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Transformer-base
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-LLM License 2.0
<br>
# Usage
Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
## Using the Pytorch model with 🤗 transformers
### Running the model on a CPU
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU using `torch.compile`
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
# Training Details
## Training Data
## Training Procedure
### Training Hyperparameters
| **Hyperparameter** | **Value** | **Comment** |
|--------------------|------------|-------------------------------------------|
| Precision | `bfloat16` | |
| Optimizer | AdamW | |
| Max learning rate | | Following a WSD (warmup-stable-decay) learning rate schedule |
| Weight decay | | |
| Batch size | | |
# Evaluation
<table>
<tr>
<th>Metrics</th>
<th>Llama3.1-8B</th>
<th style="background-color: rgba(80, 15, 213, 0.5);">Falcon3-7B-Base</th>
</tr>
<tr>
<td>Row 1, Cell 1</td>
<td>Row 1, Cell 2</td>
<td style="background-color: rgba(80, 15, 213, 0.5);">Row 1, Cell 3</td>
</tr>
<tr>
<td>Row 2, Cell 1</td>
<td>Row 2, Cell 2</td>
<td style="background-color: rgba(80, 15, 213, 0.5);">Row 2, Cell 3</td>
</tr>
</table>
# Citation
|