---
language:
- en
tags:
- falcon3
---
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
# TL;DR
# Model Details
## Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Transformer-base
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-LLM License 2.0
# Usage
Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
## Using the Pytorch model with 🤗 transformers
### Running the model on a CPU
Click to expand
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
### Running the model on a GPU
Click to expand
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
### Running the model on a GPU using `torch.compile`
Click to expand
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
# Training Details
## Training Data
## Training Procedure
### Training Hyperparameters
| **Hyperparameter** | **Value** | **Comment** |
|--------------------|------------|-------------------------------------------|
| Precision | `bfloat16` | |
| Optimizer | AdamW | |
| Max learning rate | | Following a WSD (warmup-stable-decay) learning rate schedule |
| Weight decay | | |
| Batch size | | |
# Evaluation
Metrics |
Llama3.1-8B |
Falcon3-7B-Base |
MUSR |
Row 1, Cell 2 |
18.70 |
BBH |
Row 2, Cell 2 |
32.68 |
MMLU_PRO |
Row 2, Cell 2 |
32.43 |
IF_EVAL |
Row 2, Cell 2 |
34.27 |
GPQA |
Row 2, Cell 2 |
13.97 |
MATH |
Row 2, Cell 2 |
18.02 |
AVG |
Row 2, Cell 2 |
24.85 |
Category |
Benchmark |
Llama3.1-8B |
Qwen2-7B |
Qwen2.5-7B |
falcon{7}{Base} |
Gemma2-9B |
Yi1.5-9B |
Mistral-NeMo-12B |
falcon{10}{Base} |
General |
MMLU (5-shot) |
65.2 |
70.4 |
74.2 |
67.5 |
0 |
69.6 |
68.8 |
73.1 |
MMLU-PRO (5-shot) |
32.7 |
42.1 |
43.5 |
39.2 |
0 |
39.3 |
34.7 |
42.5 |
IFEval |
12.0 |
30.6 |
33.9 |
34.3 |
0 |
29.1 |
16.1 |
36.4 |
# Citation