File size: 6,241 Bytes
3abb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
5535b52
3abb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
language:
- en
tags:
- falcon3
- falcon3_mamba
- falcon_mamba
base_model:
- tiiuae/Falcon3-Mamba-7B-Base
---

# Falcon3-Mamba-7B-Instruct

**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.

This repository contains the **Falcon3-Mamba-7B-Instruct**. It achieves, compared to similar SSM-based models of the same size, state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-Mamba-7B-Instruct supports a context length up to 32K and was mainly trained on english corpus.

## Model Details
- Architecture (same as [Falcon-Mamba-7b](https://huggingface.co/tiiuae/falcon-mamba-7b))
  - Mamba1 based causal decoder only architecture trained on a causal language modeling task (i.e., predict the next token).
  - 64 decoder blocks
  - width: 4096
  - state_size: 16 
  - 32k context length
  - 65k vocab size
- Continue Pretrained from [Falcon Mamba 7B](https://huggingface.co/tiiuae/falcon-mamba-7b), with another 1500 Gigatokens of data comprising of web, code, STEM and high quality data.
- Postrained on 1.2 million samples of STEM, conversations, code, and safety.
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024


## Getting started

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM


from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "tiiuae/Falcon3-Mamba-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many hours in one day?"
messages = [
    {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

</details>

<br>

# Benchmarks
We report in the following table our internal pipeline benchmarks. For the benchmarks marked by star, we normalize the results with HuggingFace score normalization:

<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>
            <th>Zamba2-7B-instruct</th>
            <th>Jamba-1.5-Mini</th>
            <th>Llama-3.1-8B-Instruct</th>
            <th>Falcon3-Mamba-7B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>30.6%</td>
            <td>68.7%</td>
            <td>55.9%</td>
            <td>65.3%</td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)*</td>
            <td>32.4%</td>
            <td>31.6%</td>
            <td>21.8%</td>
            <td>26.3%</td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td>69.9%</td>
            <td>65.7%</td>
            <td>78.8%</td>
            <td>71.7%</td>
        </tr>
        <tr>
            <td rowspan="2">Math</td>
            <td>GSM8K (5-shot)</td>
            <td>0%</td>
            <td>74.9%</td>
            <td>19.2%</td>
            <td>65.2%</td>
        </tr>
        <tr>
            <td>MATH Lvl-5 (4-shot)</td>
            <td>13.6%</td>
            <td>6.9%</td>
            <td>10.4%</td>
            <td>27.3%</td>
        </tr>
        <tr>
            <td rowspan="4">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>54%</td>
            <td>54.3%</td>
            <td>46.6%</td>
            <td>53.7%</td>
        </tr>
        <tr>
            <td>GPQA (0-shot)*</td>
            <td>10.3%</td>
            <td>11.1%</td>
            <td>33.6%</td>
            <td>7.2%</td>
        </tr>
        <tr>
            <td>MUSR (0-shot)*</td>
            <td>8.2%</td>
            <td>12.2%</td>
            <td>38.6%</td>
            <td>8.3%</td>
        </tr>
        <tr>
            <td>BBH (3-shot)*</td>
            <td>33.3%</td>
            <td>35.3%</td>
            <td>43.7%</td>
            <td>25.2%</td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td>75.6%</td>
            <td>82.3%</td>
            <td>78.9%</td>
            <td>80.9%</td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>29.2%</td>
            <td>94.9%</td>
            <td>80.2%</td>
            <td>93.6%</td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>75.9%</td>
            <td>64.5%</td>
            <td>-</td>
            <td>-</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td>45.6%</td>
            <td>34.6%</td>
            <td>46.2%</td>
            <td>47.2%</td>
        </tr>
    </tbody>
</table>

## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.

## Citation
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 Family of Open Models},
    author = {Falcon-LLM Team},
    month = {December},
    year = {2024}
}
```