DhiyaEddine commited on
Commit
e2a1b27
1 Parent(s): 3825618

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +220 -192
README.md CHANGED
@@ -1,199 +1,227 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
  ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - falcon3-Mamba-Instruct
6
+ base_model:
7
+ - tiiuae/Falcon3-Mamba-7B-Base
8
  ---
9
 
10
+ # Falcon3-Mamba-7B-Instruct
 
 
11
 
12
+ **Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
13
 
14
+ This repository contains the **Falcon3-Mamba-7B-Instruct**. It achieves ,compared to similar SSM-based models of the same size, state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
15
+ Falcon3-Mamba-7B-Instruct supports a context length up to 32K and 1 language (english).
16
 
17
  ## Model Details
18
+ - Architecture(same as Falcon-Mamba-7b)
19
+ - Mamba1 based causal decoder only architecture trained on a causal language modeling task (i.e., predict the next token).
20
+ - 64 decoder blocks
21
+ - width: 4096
22
+ - state_size: 16
23
+ - 32k context length
24
+ - 65k vocab size
25
+ - Pretrained on 7 Teratokens of datasets comprising of web, code, STEM and high quality data using 2048 H100 GPU chips
26
+ - Postrained on 1.2 million samples of STEM, conversations, code, and safety.
27
+ - Developed by [Technology Innovation Institute](https://www.tii.ae)
28
+ - License: TII Falcon-LLM License 2.0
29
+ - Model Release Date: December 2024
30
+
31
+
32
+ ## Getting started
33
+
34
+ <details>
35
+ <summary> Click to expand </summary>
36
+
37
+ ```python
38
+ from transformers import AutoTokenizer, AutoModelForCausalLM
39
+
40
+
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+
43
+ model_name = "tiiuae/Falcon3-Mamba-7B-Instruct"
44
+
45
+ model = AutoModelForCausalLM.from_pretrained(
46
+ model_name,
47
+ torch_dtype="auto",
48
+ device_map="auto"
49
+ )
50
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
51
+
52
+ prompt = "How many hours in one day?"
53
+ messages = [
54
+ {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
55
+ {"role": "user", "content": prompt}
56
+ ]
57
+ text = tokenizer.apply_chat_template(
58
+ messages,
59
+ tokenize=False,
60
+ add_generation_prompt=True
61
+ )
62
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
63
+
64
+ generated_ids = model.generate(
65
+ **model_inputs,
66
+ max_new_tokens=1024
67
+ )
68
+ generated_ids = [
69
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
70
+ ]
71
+
72
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
73
+ print(response)
74
+ ```
75
+
76
+ </details>
77
+
78
+ <br>
79
+
80
+ # Benchmarks
81
+ We report in the following table our internal pipeline benchmarks:
82
+
83
+ <table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
84
+ <colgroup>
85
+ <col style="width: 10%;">
86
+ <col style="width: 10%;">
87
+ <col style="width: 7%;">
88
+ <col style="width: 7%;">
89
+ <col style="width: 7%;">
90
+ <col style="width: 7%;">
91
+ <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
92
+ </colgroup>
93
+ <thead>
94
+ <tr>
95
+ <th>Category</th>
96
+ <th>Benchmark</th>
97
+ <th>Zamba2-7B-instruct</th>
98
+ <th>Jamba-1.5-Mini-instruct</th>
99
+ <th>falcon-mamba-7b-instruct</th>
100
+ <th>Llama-3.1-8B-Instruct</th>
101
+ <th>Qwen2-7B-Instruct</th>
102
+ </tr>
103
+ </thead>
104
+ <tbody>
105
+ <tr>
106
+ <td rowspan="3">General</td>
107
+ <td>MMLU (5-shot)</td>
108
+ <td>-</td>
109
+ <td>-</td>
110
+ <td>-</td>
111
+ <td>-</68.5%>
112
+ <td>-</td>
113
+ </tr>
114
+ <tr>
115
+ <td>MMLU-PRO (5-shot)</td>
116
+ <td>-</td>
117
+ <td>-</td>
118
+ <td>-</td>
119
+ <td>-</29.6%>
120
+ <td>-</td>
121
+ </tr>
122
+ <tr>
123
+ <td>IFEval</td>
124
+ <td>-</td>
125
+ <td>-</td>
126
+ <td>-</td>
127
+ <td>-</78.6%>
128
+ <td>-</td>
129
+ </tr>
130
+ <tr>
131
+ <td rowspan="2">Math</td>
132
+ <td>GSM8K (5-shot)</td>
133
+ <td>-</td>
134
+ <td>-</td>
135
+ <td>-</td>
136
+ <td>-</td>
137
+ <td>-</td>
138
+ </tr>
139
+ <tr>
140
+ <td>MATH(4-shot)</td>
141
+ <td>-</td>
142
+ <td>-</td>
143
+ <td>-</td>
144
+ <td>-</td>
145
+ <td>-</td>
146
+ </tr>
147
+ <tr>
148
+ <td rowspan="4">Reasoning</td>
149
+ <td>Arc Challenge (25-shot)</td>
150
+ <td>-</td>
151
+ <td>-</td>
152
+ <td>-</td>
153
+ <td>-</td>
154
+ <td>-</td>
155
+ </tr>
156
+ <tr>
157
+ <td>GPQA (0-shot)</td>
158
+ <td>-</td>
159
+ <td>-</td>
160
+ <td>-</td>
161
+ <td>-</2.4%>
162
+ <td>-</td>
163
+ </tr>
164
+ <tr>
165
+ <td>MUSR (0-shot)</td>
166
+ <td>-</td>
167
+ <td>-</td>
168
+ <td>-</td>
169
+ <td>-</8.4%>
170
+ <td>-</td>
171
+ </tr>
172
+ <tr>
173
+ <td>BBH (3-shot)</td>
174
+ <td>-</td>
175
+ <td>-</td>
176
+ <td>-</td>
177
+ <td>-</29.9%>
178
+ <td>-</td>
179
+ </tr>
180
+ <tr>
181
+ <td rowspan="4">CommonSense Understanding</td>
182
+ <td>PIQA (0-shot)</td>
183
+ <td>-</td>
184
+ <td>-</td>
185
+ <td>-</td>
186
+ <td>-</td>
187
+ <td>-</td>
188
+ </tr>
189
+ <tr>
190
+ <td>SciQ (0-shot)</td>
191
+ <td>-</td>
192
+ <td>-</td>
193
+ <td>-</td>
194
+ <td>-</td>
195
+ <td>-</td>
196
+ </tr>
197
+ <tr>
198
+ <td>Winogrande (0-shot)</td>
199
+ <td>-</td>
200
+ <td>-</td>
201
+ <td>-</td>
202
+ <td>-</td>
203
+ <td>-</td>
204
+ </tr>
205
+ <tr>
206
+ <td>OpenbookQA (0-shot)</td>
207
+ <td>-</td>
208
+ <td>-</td>
209
+ <td>-</td>
210
+ <td>-</td>
211
+ <td>-</td>
212
+ </tr>
213
+ </tbody>
214
+ </table>
215
+
216
+
217
+ # Citation
218
+ If Falcon3 family were helpful to your work, feel free to give us a cite.
219
+
220
+ ```
221
+ @misc{Falcon3,
222
+ title = {The Falcon 3 family of Open Models},
223
+ author = {TII Team},
224
+ month = {December},
225
+ year = {2024}
226
+ }
227
+ ```