File size: 1,938 Bytes
3d563af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-german-cased-gnad10-finetuned-tagesschau-subcategories
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-german-cased-gnad10-finetuned-tagesschau-subcategories

This model is a fine-tuned version of [Mathking/bert-base-german-cased-gnad10](https://huggingface.co/Mathking/bert-base-german-cased-gnad10) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4725
- Accuracy: 0.8667

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3043        | 0.4   | 30   | 0.8691          | 0.7533   |
| 0.74          | 0.8   | 60   | 0.5307          | 0.82     |
| 0.4729        | 1.2   | 90   | 0.4614          | 0.8133   |
| 0.3212        | 1.6   | 120  | 0.5641          | 0.8067   |
| 0.379         | 2.0   | 150  | 0.4321          | 0.8467   |
| 0.1906        | 2.4   | 180  | 0.4359          | 0.8667   |
| 0.164         | 2.8   | 210  | 0.5124          | 0.8133   |
| 0.1294        | 3.2   | 240  | 0.4615          | 0.8533   |
| 0.1393        | 3.6   | 270  | 0.4725          | 0.8667   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2