arjunashok commited on
Commit
f439182
1 Parent(s): f936da5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -1
README.md CHANGED
@@ -16,7 +16,13 @@ tags:
16
 
17
  Lag-Llama is the <b>first open-source foundation model for time series forecasting</b>!
18
 
19
- [[Tweet Thread](https://twitter.com/arjunashok37/status/1755261111233114165)] [[Model Weights](https://huggingface.co/time-series-foundation-models/Lag-Llama)] [[Colab Demo 1: Zero-Shot Forecasting](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing)] [[Colab Demo 2: (Preliminary Finetuning)](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing)] [[GitHub](https://github.com/time-series-foundation-models/lag-llama)] [[Paper](https://arxiv.org/abs/2310.08278)]
 
 
 
 
 
 
20
 
21
  ____
22
  This HuggingFace model houses the <a href="https://huggingface.co/time-series-foundation-models/Lag-Llama/blob/main/lag-llama.ckpt" target="_blank">pretrained checkpoint</a> of Lag-Llama.
@@ -25,6 +31,7 @@ ____
25
 
26
  <b>Updates</b>:
27
 
 
28
  * **5-Apr-2024**: Added a [section](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?authuser=1#scrollTo=Mj9LXMpJ01d7&line=6&uniqifier=1) in Colab Demo 1 on the importance of tuning the context length for zero-shot forecasting. Added a [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) in the README; added recommendations for finetuning. These recommendations will be demonstrated with an example in [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) soon.
29
  * **4-Apr-2024**: We have updated our requirements file with new versions of certain packages. Please update/recreate your environments if you have previously used the code locally.
30
  * **7-Mar-2024**: We have released a preliminary [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) for finetuning. Please note this is a preliminary tutorial. We recommend taking a look at the best practices if you are finetuning the model or using it for benchmarking.
 
16
 
17
  Lag-Llama is the <b>first open-source foundation model for time series forecasting</b>!
18
 
19
+ [[Tweet Thread](https://twitter.com/arjunashok37/status/1755261111233114165)]
20
+
21
+ [[Code](https://github.com/time-series-foundation-models/lag-llama)] [[Model Weights](https://huggingface.co/time-series-foundation-models/Lag-Llama)] [[Colab Demo 1: Zero-Shot Forecasting](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing)] [[Colab Demo 2: (Preliminary Finetuning)](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing)]
22
+
23
+ [[Paper](https://arxiv.org/abs/2310.08278)]
24
+
25
+ [[Video](https://www.youtube.com/watch?v=Mf2FOzDPxck)]
26
 
27
  ____
28
  This HuggingFace model houses the <a href="https://huggingface.co/time-series-foundation-models/Lag-Llama/blob/main/lag-llama.ckpt" target="_blank">pretrained checkpoint</a> of Lag-Llama.
 
31
 
32
  <b>Updates</b>:
33
 
34
+ * **9-Apr-2024**: We have released a 15-minute video 🎥 on Lag-Llama on [YouTube](https://www.youtube.com/watch?v=Mf2FOzDPxck).
35
  * **5-Apr-2024**: Added a [section](https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?authuser=1#scrollTo=Mj9LXMpJ01d7&line=6&uniqifier=1) in Colab Demo 1 on the importance of tuning the context length for zero-shot forecasting. Added a [best practices section](https://github.com/time-series-foundation-models/lag-llama?tab=readme-ov-file#best-practices) in the README; added recommendations for finetuning. These recommendations will be demonstrated with an example in [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) soon.
36
  * **4-Apr-2024**: We have updated our requirements file with new versions of certain packages. Please update/recreate your environments if you have previously used the code locally.
37
  * **7-Mar-2024**: We have released a preliminary [Colab Demo 2](https://colab.research.google.com/drive/1uvTmh-pe1zO5TeaaRVDdoEWJ5dFDI-pA?usp=sharing) for finetuning. Please note this is a preliminary tutorial. We recommend taking a look at the best practices if you are finetuning the model or using it for benchmarking.