Model card for xception65.tf_in1k
An Aligned Xception image classification model. Trained on ImageNet-1k in Tensorflow and ported to PyTorch by Ross Wightman.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 39.9
- GMACs: 14.0
- Activations (M): 52.5
- Image size: 299 x 299
- Papers:
- Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation: https://arxiv.org/abs/1802.02611
- Xception: Deep Learning with Depthwise Separable Convolutions: https://arxiv.org/abs/1610.02357
- Dataset: ImageNet-1k
- Original: https://github.com/tensorflow/models/blob/master/research/deeplab/
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('xception65.tf_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'xception65.tf_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 128, 150, 150])
# torch.Size([1, 256, 75, 75])
# torch.Size([1, 728, 38, 38])
# torch.Size([1, 1024, 19, 19])
# torch.Size([1, 2048, 10, 10])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'xception65.tf_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 10, 10) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Citation
@inproceedings{deeplabv3plus2018,
title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
booktitle={ECCV},
year={2018}
}
@misc{chollet2017xception,
title={Xception: Deep Learning with Depthwise Separable Convolutions},
author={François Chollet},
year={2017},
eprint={1610.02357},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 136
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.