tinkerist commited on
Commit
0e3a788
1 Parent(s): 0b987bc

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 204.79 +/- 19.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f74e20b6d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f74e20b6dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f74e20b6e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f74e20b6ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f74e20b6f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f74e20bd050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f74e20bd0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f74e20bd170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f74e20bd200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74e20bd290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f74e20bd320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f74e20fcde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668687244164792988, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMKWb2uY4m6pUqVunyzn7bIq/I6gxSpOQAAgD8AAIA/Ri8mPmyMs7sLxyQ8k0fUudTeAb0fqbO6AACAPwAAgD9YVS6/LUpcvjLsoLqdHzC4ELMvvkLgoDgAAIA/AACAP2BmI77OQdc9CKUJvLXlBL7AKQo+ZcIyvQAAAAAAAAAAszwIPZYOgz8F+ly9oNa5vj4fnT0l61G8AAAAAAAAAADTXCE+3tO5P1rZGT8nPlG+R6TPPUciqz4AAAAAAAAAANKCkb7a4Gu9wISSu1J3k7oLz8g+7YnQOgAAgD8AAIA/jwgEv597ljyRIY+9rEgQvupkib1Zpkq+AAAAAAAAAACYJPi+4c7mPUL89LqLCeY3UN8JvVfoFzoAAIA/AACAP1pRaT7pWjK82k6TOhAWXbicQKO92r6uuQAAgD8AAIA/lWmYvnYAFLzRT6a6Hi1VuNc8bD31nME5AACAPwAAgD/NAIm79tQcuhK/SzvBONk2ohAtOK0KaboAAIA/AACAP3ZwuD4okPU+4OCSvA3Jzr6GaGI+UB3+vQAAAAAAAAAAyFzavo8TFD1tYYI8nwAauSFO5jysz7m7AACAPwAAgD/zHDG/FtqIvi9JGDsSzi85hpvXPTmAP7oAAIA/AACAP3OK8T3XoyO5kbiBuffWerU8jPA7S9SsOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbjDUYYX0YkCUhpRSlIwBbJRN6AOMAXSUR0CFAlMfzSThdX2UKGgGaAloD0MIH031ZP5WV0CUhpRSlGgVTegDaBZHQIUKMx9G7SR1fZQoaAZoCWgPQwg7qMR1jGFPQJSGlFKUaBVLpGgWR0CFNKZMtbs4dX2UKGgGaAloD0MIhe0nY3xHYECUhpRSlGgVTegDaBZHQIU3y2v0ROF1fZQoaAZoCWgPQwi/u5UlOpJkQJSGlFKUaBVN6ANoFkdAhTu0FB6a9nV9lChoBmgJaA9DCI9WtaSjeWFAlIaUUpRoFU3oA2gWR0CFRUNy5qdpdX2UKGgGaAloD0MIG/Z7Yp31XUCUhpRSlGgVTegDaBZHQIVSv6InBtV1fZQoaAZoCWgPQwjds67RchheQJSGlFKUaBVN6ANoFkdAhVVwjdHlO3V9lChoBmgJaA9DCHUhVn+E9l9AlIaUUpRoFU3oA2gWR0CFWH3Hq/ucdX2UKGgGaAloD0MIuf3yyQojYkCUhpRSlGgVTegDaBZHQIViUSqU/wB1fZQoaAZoCWgPQwgEcLN4sQdfQJSGlFKUaBVN6ANoFkdAhWLBDgIhQnV9lChoBmgJaA9DCH9o5sk1TltAlIaUUpRoFU3oA2gWR0CFeEchC+lCdX2UKGgGaAloD0MIpS2u8ZmwMkCUhpRSlGgVS+toFkdAhX1duYQarHV9lChoBmgJaA9DCK99Ab1wuVRAlIaUUpRoFU3oA2gWR0CFgSqdYnv2dX2UKGgGaAloD0MIdaxSeqZhWUCUhpRSlGgVTegDaBZHQIWOFQj2SMd1fZQoaAZoCWgPQwjVl6WdmlM5QJSGlFKUaBVN6ANoFkdAhY8kyk9EC3V9lChoBmgJaA9DCDJaR1WTDWRAlIaUUpRoFU3oA2gWR0CFmVOZ9d/sdX2UKGgGaAloD0MI6xotB3qJXUCUhpRSlGgVTegDaBZHQIWbYIfKZD11fZQoaAZoCWgPQwgRGyycpItgQJSGlFKUaBVN6ANoFkdAhaPSxJNCaHV9lChoBmgJaA9DCKIo0CfyVGBAlIaUUpRoFU3oA2gWR0CF0JEG7jDLdX2UKGgGaAloD0MIMbWlDvISW0CUhpRSlGgVTegDaBZHQIXVCBkI5YJ1fZQoaAZoCWgPQwiYGMv0y0FgQJSGlFKUaBVN6ANoFkdAhdsQeeWfLHV9lChoBmgJaA9DCC3Pg7uz2WNAlIaUUpRoFU3oA2gWR0CF6ecuJ1q4dX2UKGgGaAloD0MIngq45/lTOUCUhpRSlGgVS95oFkdAhe3OoP07KnV9lChoBmgJaA9DCEj99QoLBi9AlIaUUpRoFUvPaBZHQIX14IWxhUl1fZQoaAZoCWgPQwiEu7N229VgQJSGlFKUaBVN6ANoFkdAhfme05U96nV9lChoBmgJaA9DCGGOHr83zmBAlIaUUpRoFU3oA2gWR0CF/CbDMvAXdX2UKGgGaAloD0MI+IvZklW1XkCUhpRSlGgVTegDaBZHQIX+4ctGus91fZQoaAZoCWgPQwgg0QSKWMZgQJSGlFKUaBVN6ANoFkdAhgf/V7Qb/HV9lChoBmgJaA9DCO0rD9LT6mJAlIaUUpRoFU3oA2gWR0CGHqPMjeKsdX2UKGgGaAloD0MIzsXf9oRtYUCUhpRSlGgVTegDaBZHQIYkBx95Qgt1fZQoaAZoCWgPQwiqgHueP6VXQJSGlFKUaBVN6ANoFkdAhifHjhky13V9lChoBmgJaA9DCLFTrBoEhmBAlIaUUpRoFU3oA2gWR0CGNHJCjUNKdX2UKGgGaAloD0MIMSQnE7cHWECUhpRSlGgVTegDaBZHQIY1d+5OJtV1fZQoaAZoCWgPQwgj100pL8JhQJSGlFKUaBVN6ANoFkdAhj7BLf1pTXV9lChoBmgJaA9DCOxQTUnWl1tAlIaUUpRoFU3oA2gWR0CGQJ14gRsedX2UKGgGaAloD0MISUkPQ6sbTkCUhpRSlGgVTegDaBZHQIZNxq46Oo51fZQoaAZoCWgPQwjs3R/vVRxcQJSGlFKUaBVN6ANoFkdAhnoRFqi48XV9lChoBmgJaA9DCEc+r3hqU2BAlIaUUpRoFU3oA2gWR0CGhAAtFrmAdX2UKGgGaAloD0MIjL0XX7TWX0CUhpRSlGgVTegDaBZHQIaGnHo5ggJ1fZQoaAZoCWgPQwiiKTv9IO9gQJSGlFKUaBVN6ANoFkdAho3dX9zfanV9lChoBmgJaA9DCIz0ona/32FAlIaUUpRoFU3oA2gWR0CGkSpFTefqdX2UKGgGaAloD0MII4JxcOl1YECUhpRSlGgVTegDaBZHQIaTmh/RVp91fZQoaAZoCWgPQwgcfjfdsm5YQJSGlFKUaBVN6ANoFkdAhpZkxyn1nXV9lChoBmgJaA9DCG8p54u9bVtAlIaUUpRoFU3oA2gWR0CGoFdu5z5odX2UKGgGaAloD0MIlpLlJJRYW0CUhpRSlGgVTegDaBZHQIa3KWZ7Xxx1fZQoaAZoCWgPQwjbb+1EyRJkQJSGlFKUaBVN6ANoFkdAhryb9AHE/HV9lChoBmgJaA9DCDMXuDxWK2NAlIaUUpRoFU3oA2gWR0CGwH80DU3GdX2UKGgGaAloD0MIi3CTUeX1YkCUhpRSlGgVTegDaBZHQIbN6esgdOt1fZQoaAZoCWgPQwhyN4jWikZTQJSGlFKUaBVN6ANoFkdAhs766reZX3V9lChoBmgJaA9DCIS4cvbOcCFAlIaUUpRoFUvkaBZHQIbYob2lEZ11fZQoaAZoCWgPQwiK6NfWT5ReQJSGlFKUaBVN6ANoFkdAhtj+CCjDbnV9lChoBmgJaA9DCI9srprnj1pAlIaUUpRoFU3oA2gWR0CG2va4+bExdX2UKGgGaAloD0MIA7NCke7nO0CUhpRSlGgVS8RoFkdAhuRJ2ECeVnV9lChoBmgJaA9DCDQO9buwIFpAlIaUUpRoFU3oA2gWR0CG6BKOktVadX2UKGgGaAloD0MIn1inyvfQPkCUhpRSlGgVS+loFkdAhulZUkv9L3V9lChoBmgJaA9DCELuIkxRB2JAlIaUUpRoFU3oA2gWR0CHFAQ6IWP+dX2UKGgGaAloD0MI4QuTqYJdO0CUhpRSlGgVS75oFkdAhxSkh7mdRXV9lChoBmgJaA9DCNF2TN0VOmJAlIaUUpRoFU3oA2gWR0CHHMl3Qla9dX2UKGgGaAloD0MInplgONduXkCUhpRSlGgVTegDaBZHQIcfIMYuTRp1fZQoaAZoCWgPQwjH9e/6TIxiQJSGlFKUaBVN6ANoFkdAhyVFaB7NS3V9lChoBmgJaA9DCMx8Bz/xwmNAlIaUUpRoFU3oA2gWR0CHKGaxX4j9dX2UKGgGaAloD0MIXmQCfo20KECUhpRSlGgVS8loFkdAhyiGzjWCmXV9lChoBmgJaA9DCOlhaHVyQWJAlIaUUpRoFU3oA2gWR0CHKovZAY51dX2UKGgGaAloD0MISYRGsHHcZECUhpRSlGgVTegDaBZHQIctGLHdXT51fZQoaAZoCWgPQwiX4xWInjRhQJSGlFKUaBVN6ANoFkdAhzWzV+Zw43V9lChoBmgJaA9DCJmEC3kEUzVAlIaUUpRoFUv2aBZHQIc3W2d/axp1fZQoaAZoCWgPQwjSqMDJNrw/QJSGlFKUaBVL9WgWR0CHRZzND+irdX2UKGgGaAloD0MI2eicn2I9YUCUhpRSlGgVTegDaBZHQIdJdCJGe+V1fZQoaAZoCWgPQwjj3vyGia44QJSGlFKUaBVL2mgWR0CHTKlNUOurdX2UKGgGaAloD0MIQWZn0TuIVECUhpRSlGgVTegDaBZHQIdRkxEfDDV1fZQoaAZoCWgPQwh5zas6q3tiQJSGlFKUaBVN6ANoFkdAh2nG6wt8NXV9lChoBmgJaA9DCJRqn47He11AlIaUUpRoFU3oA2gWR0CHaik/r0J4dX2UKGgGaAloD0MIxOi5ha7ECUCUhpRSlGgVS9loFkdAh2wg/C66KHV9lChoBmgJaA9DCCbGMv0SgVdAlIaUUpRoFU3oA2gWR0CHdiZkTYdydX2UKGgGaAloD0MI51JcVfaRYkCUhpRSlGgVTegDaBZHQId6C6+WWyF1fZQoaAZoCWgPQwhFnE6yVf9jQJSGlFKUaBVN6ANoFkdAh3tLE1l5GHV9lChoBmgJaA9DCFH2lnK+fl1AlIaUUpRoFU3oA2gWR0CHrxdadMCcdX2UKGgGaAloD0MIY0LMJVWbEsCUhpRSlGgVS9NoFkdAh683GGVRk3V9lChoBmgJaA9DCIXukjgrC2NAlIaUUpRoFU3oA2gWR0CHuBUe+23KdX2UKGgGaAloD0MIbTZWYp6FHsCUhpRSlGgVS9loFkdAh7z8tPHktHV9lChoBmgJaA9DCIT0FDlE7BfAlIaUUpRoFUvXaBZHQIfDP3nIQvp1fZQoaAZoCWgPQwie8BKc+jNlQJSGlFKUaBVN6ANoFkdAh8ROn2qT83V9lChoBmgJaA9DCP2k2qfjYmVAlIaUUpRoFU3oA2gWR0CHyHIV/MGHdX2UKGgGaAloD0MI0v9yLVobY0CUhpRSlGgVTegDaBZHQIfInVCojwB1fZQoaAZoCWgPQwhU5uYb0cJeQJSGlFKUaBVN6ANoFkdAh8tkvkBCD3V9lChoBmgJaA9DCCoAxjNoRDlAlIaUUpRoFUv3aBZHQIfPO/etSyd1fZQoaAZoCWgPQwjRdHYyOIlfQJSGlFKUaBVN6ANoFkdAh9hxdhRZU3V9lChoBmgJaA9DCLH34ov2qB3AlIaUUpRoFUvPaBZHQIffr/ffoA51fZQoaAZoCWgPQwgw16IFaNZRQJSGlFKUaBVLz2gWR0CH4xrt3OfNdX2UKGgGaAloD0MIMEs7NRfxYkCUhpRSlGgVTegDaBZHQIfma/RE4Nt1fZQoaAZoCWgPQwgAqyNHOldhQJSGlFKUaBVN6ANoFkdAh+nBWHUMHHV9lChoBmgJaA9DCGRA9nr3y2FAlIaUUpRoFU3oA2gWR0CH7LmvGIbgdX2UKGgGaAloD0MIrg6AuKvrUkCUhpRSlGgVS5VoFkdAh/Ir0z0pVnV9lChoBmgJaA9DCOrQ6Xk3DjRAlIaUUpRoFUvDaBZHQIf9iQYDT0B1fZQoaAZoCWgPQwhngXaHlAFjQJSGlFKUaBVN6ANoFkdAiAYaVlf7anV9lChoBmgJaA9DCESGVbyRIWJAlIaUUpRoFU3oA2gWR0CIB++j/MnrdX2UKGgGaAloD0MIeCgK9InlXECUhpRSlGgVTegDaBZHQIgUjd1uBMB1fZQoaAZoCWgPQwieJjPeViRLwJSGlFKUaBVL9WgWR0CIF9GXokiVdX2UKGgGaAloD0MIsoNKXMcLXUCUhpRSlGgVTegDaBZHQIgcLtZ3cHp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8217c79ffaf1d7680005ff87f839e28114d416be9be79e3a0eca7a466cbe3f2e
3
+ size 147126
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f74e20b6d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f74e20b6dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f74e20b6e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f74e20b6ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f74e20b6f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f74e20bd050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f74e20bd0e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f74e20bd170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f74e20bd200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74e20bd290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f74e20bd320>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f74e20fcde0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668687244164792988,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMKWb2uY4m6pUqVunyzn7bIq/I6gxSpOQAAgD8AAIA/Ri8mPmyMs7sLxyQ8k0fUudTeAb0fqbO6AACAPwAAgD9YVS6/LUpcvjLsoLqdHzC4ELMvvkLgoDgAAIA/AACAP2BmI77OQdc9CKUJvLXlBL7AKQo+ZcIyvQAAAAAAAAAAszwIPZYOgz8F+ly9oNa5vj4fnT0l61G8AAAAAAAAAADTXCE+3tO5P1rZGT8nPlG+R6TPPUciqz4AAAAAAAAAANKCkb7a4Gu9wISSu1J3k7oLz8g+7YnQOgAAgD8AAIA/jwgEv597ljyRIY+9rEgQvupkib1Zpkq+AAAAAAAAAACYJPi+4c7mPUL89LqLCeY3UN8JvVfoFzoAAIA/AACAP1pRaT7pWjK82k6TOhAWXbicQKO92r6uuQAAgD8AAIA/lWmYvnYAFLzRT6a6Hi1VuNc8bD31nME5AACAPwAAgD/NAIm79tQcuhK/SzvBONk2ohAtOK0KaboAAIA/AACAP3ZwuD4okPU+4OCSvA3Jzr6GaGI+UB3+vQAAAAAAAAAAyFzavo8TFD1tYYI8nwAauSFO5jysz7m7AACAPwAAgD/zHDG/FtqIvi9JGDsSzi85hpvXPTmAP7oAAIA/AACAP3OK8T3XoyO5kbiBuffWerU8jPA7S9SsOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbjDUYYX0YkCUhpRSlIwBbJRN6AOMAXSUR0CFAlMfzSThdX2UKGgGaAloD0MIH031ZP5WV0CUhpRSlGgVTegDaBZHQIUKMx9G7SR1fZQoaAZoCWgPQwg7qMR1jGFPQJSGlFKUaBVLpGgWR0CFNKZMtbs4dX2UKGgGaAloD0MIhe0nY3xHYECUhpRSlGgVTegDaBZHQIU3y2v0ROF1fZQoaAZoCWgPQwi/u5UlOpJkQJSGlFKUaBVN6ANoFkdAhTu0FB6a9nV9lChoBmgJaA9DCI9WtaSjeWFAlIaUUpRoFU3oA2gWR0CFRUNy5qdpdX2UKGgGaAloD0MIG/Z7Yp31XUCUhpRSlGgVTegDaBZHQIVSv6InBtV1fZQoaAZoCWgPQwjds67RchheQJSGlFKUaBVN6ANoFkdAhVVwjdHlO3V9lChoBmgJaA9DCHUhVn+E9l9AlIaUUpRoFU3oA2gWR0CFWH3Hq/ucdX2UKGgGaAloD0MIuf3yyQojYkCUhpRSlGgVTegDaBZHQIViUSqU/wB1fZQoaAZoCWgPQwgEcLN4sQdfQJSGlFKUaBVN6ANoFkdAhWLBDgIhQnV9lChoBmgJaA9DCH9o5sk1TltAlIaUUpRoFU3oA2gWR0CFeEchC+lCdX2UKGgGaAloD0MIpS2u8ZmwMkCUhpRSlGgVS+toFkdAhX1duYQarHV9lChoBmgJaA9DCK99Ab1wuVRAlIaUUpRoFU3oA2gWR0CFgSqdYnv2dX2UKGgGaAloD0MIdaxSeqZhWUCUhpRSlGgVTegDaBZHQIWOFQj2SMd1fZQoaAZoCWgPQwjVl6WdmlM5QJSGlFKUaBVN6ANoFkdAhY8kyk9EC3V9lChoBmgJaA9DCDJaR1WTDWRAlIaUUpRoFU3oA2gWR0CFmVOZ9d/sdX2UKGgGaAloD0MI6xotB3qJXUCUhpRSlGgVTegDaBZHQIWbYIfKZD11fZQoaAZoCWgPQwgRGyycpItgQJSGlFKUaBVN6ANoFkdAhaPSxJNCaHV9lChoBmgJaA9DCKIo0CfyVGBAlIaUUpRoFU3oA2gWR0CF0JEG7jDLdX2UKGgGaAloD0MIMbWlDvISW0CUhpRSlGgVTegDaBZHQIXVCBkI5YJ1fZQoaAZoCWgPQwiYGMv0y0FgQJSGlFKUaBVN6ANoFkdAhdsQeeWfLHV9lChoBmgJaA9DCC3Pg7uz2WNAlIaUUpRoFU3oA2gWR0CF6ecuJ1q4dX2UKGgGaAloD0MIngq45/lTOUCUhpRSlGgVS95oFkdAhe3OoP07KnV9lChoBmgJaA9DCEj99QoLBi9AlIaUUpRoFUvPaBZHQIX14IWxhUl1fZQoaAZoCWgPQwiEu7N229VgQJSGlFKUaBVN6ANoFkdAhfme05U96nV9lChoBmgJaA9DCGGOHr83zmBAlIaUUpRoFU3oA2gWR0CF/CbDMvAXdX2UKGgGaAloD0MI+IvZklW1XkCUhpRSlGgVTegDaBZHQIX+4ctGus91fZQoaAZoCWgPQwgg0QSKWMZgQJSGlFKUaBVN6ANoFkdAhgf/V7Qb/HV9lChoBmgJaA9DCO0rD9LT6mJAlIaUUpRoFU3oA2gWR0CGHqPMjeKsdX2UKGgGaAloD0MIzsXf9oRtYUCUhpRSlGgVTegDaBZHQIYkBx95Qgt1fZQoaAZoCWgPQwiqgHueP6VXQJSGlFKUaBVN6ANoFkdAhifHjhky13V9lChoBmgJaA9DCLFTrBoEhmBAlIaUUpRoFU3oA2gWR0CGNHJCjUNKdX2UKGgGaAloD0MIMSQnE7cHWECUhpRSlGgVTegDaBZHQIY1d+5OJtV1fZQoaAZoCWgPQwgj100pL8JhQJSGlFKUaBVN6ANoFkdAhj7BLf1pTXV9lChoBmgJaA9DCOxQTUnWl1tAlIaUUpRoFU3oA2gWR0CGQJ14gRsedX2UKGgGaAloD0MISUkPQ6sbTkCUhpRSlGgVTegDaBZHQIZNxq46Oo51fZQoaAZoCWgPQwjs3R/vVRxcQJSGlFKUaBVN6ANoFkdAhnoRFqi48XV9lChoBmgJaA9DCEc+r3hqU2BAlIaUUpRoFU3oA2gWR0CGhAAtFrmAdX2UKGgGaAloD0MIjL0XX7TWX0CUhpRSlGgVTegDaBZHQIaGnHo5ggJ1fZQoaAZoCWgPQwiiKTv9IO9gQJSGlFKUaBVN6ANoFkdAho3dX9zfanV9lChoBmgJaA9DCIz0ona/32FAlIaUUpRoFU3oA2gWR0CGkSpFTefqdX2UKGgGaAloD0MII4JxcOl1YECUhpRSlGgVTegDaBZHQIaTmh/RVp91fZQoaAZoCWgPQwgcfjfdsm5YQJSGlFKUaBVN6ANoFkdAhpZkxyn1nXV9lChoBmgJaA9DCG8p54u9bVtAlIaUUpRoFU3oA2gWR0CGoFdu5z5odX2UKGgGaAloD0MIlpLlJJRYW0CUhpRSlGgVTegDaBZHQIa3KWZ7Xxx1fZQoaAZoCWgPQwjbb+1EyRJkQJSGlFKUaBVN6ANoFkdAhryb9AHE/HV9lChoBmgJaA9DCDMXuDxWK2NAlIaUUpRoFU3oA2gWR0CGwH80DU3GdX2UKGgGaAloD0MIi3CTUeX1YkCUhpRSlGgVTegDaBZHQIbN6esgdOt1fZQoaAZoCWgPQwhyN4jWikZTQJSGlFKUaBVN6ANoFkdAhs766reZX3V9lChoBmgJaA9DCIS4cvbOcCFAlIaUUpRoFUvkaBZHQIbYob2lEZ11fZQoaAZoCWgPQwiK6NfWT5ReQJSGlFKUaBVN6ANoFkdAhtj+CCjDbnV9lChoBmgJaA9DCI9srprnj1pAlIaUUpRoFU3oA2gWR0CG2va4+bExdX2UKGgGaAloD0MIA7NCke7nO0CUhpRSlGgVS8RoFkdAhuRJ2ECeVnV9lChoBmgJaA9DCDQO9buwIFpAlIaUUpRoFU3oA2gWR0CG6BKOktVadX2UKGgGaAloD0MIn1inyvfQPkCUhpRSlGgVS+loFkdAhulZUkv9L3V9lChoBmgJaA9DCELuIkxRB2JAlIaUUpRoFU3oA2gWR0CHFAQ6IWP+dX2UKGgGaAloD0MI4QuTqYJdO0CUhpRSlGgVS75oFkdAhxSkh7mdRXV9lChoBmgJaA9DCNF2TN0VOmJAlIaUUpRoFU3oA2gWR0CHHMl3Qla9dX2UKGgGaAloD0MInplgONduXkCUhpRSlGgVTegDaBZHQIcfIMYuTRp1fZQoaAZoCWgPQwjH9e/6TIxiQJSGlFKUaBVN6ANoFkdAhyVFaB7NS3V9lChoBmgJaA9DCMx8Bz/xwmNAlIaUUpRoFU3oA2gWR0CHKGaxX4j9dX2UKGgGaAloD0MIXmQCfo20KECUhpRSlGgVS8loFkdAhyiGzjWCmXV9lChoBmgJaA9DCOlhaHVyQWJAlIaUUpRoFU3oA2gWR0CHKovZAY51dX2UKGgGaAloD0MISYRGsHHcZECUhpRSlGgVTegDaBZHQIctGLHdXT51fZQoaAZoCWgPQwiX4xWInjRhQJSGlFKUaBVN6ANoFkdAhzWzV+Zw43V9lChoBmgJaA9DCJmEC3kEUzVAlIaUUpRoFUv2aBZHQIc3W2d/axp1fZQoaAZoCWgPQwjSqMDJNrw/QJSGlFKUaBVL9WgWR0CHRZzND+irdX2UKGgGaAloD0MI2eicn2I9YUCUhpRSlGgVTegDaBZHQIdJdCJGe+V1fZQoaAZoCWgPQwjj3vyGia44QJSGlFKUaBVL2mgWR0CHTKlNUOurdX2UKGgGaAloD0MIQWZn0TuIVECUhpRSlGgVTegDaBZHQIdRkxEfDDV1fZQoaAZoCWgPQwh5zas6q3tiQJSGlFKUaBVN6ANoFkdAh2nG6wt8NXV9lChoBmgJaA9DCJRqn47He11AlIaUUpRoFU3oA2gWR0CHaik/r0J4dX2UKGgGaAloD0MIxOi5ha7ECUCUhpRSlGgVS9loFkdAh2wg/C66KHV9lChoBmgJaA9DCCbGMv0SgVdAlIaUUpRoFU3oA2gWR0CHdiZkTYdydX2UKGgGaAloD0MI51JcVfaRYkCUhpRSlGgVTegDaBZHQId6C6+WWyF1fZQoaAZoCWgPQwhFnE6yVf9jQJSGlFKUaBVN6ANoFkdAh3tLE1l5GHV9lChoBmgJaA9DCFH2lnK+fl1AlIaUUpRoFU3oA2gWR0CHrxdadMCcdX2UKGgGaAloD0MIY0LMJVWbEsCUhpRSlGgVS9NoFkdAh683GGVRk3V9lChoBmgJaA9DCIXukjgrC2NAlIaUUpRoFU3oA2gWR0CHuBUe+23KdX2UKGgGaAloD0MIbTZWYp6FHsCUhpRSlGgVS9loFkdAh7z8tPHktHV9lChoBmgJaA9DCIT0FDlE7BfAlIaUUpRoFUvXaBZHQIfDP3nIQvp1fZQoaAZoCWgPQwie8BKc+jNlQJSGlFKUaBVN6ANoFkdAh8ROn2qT83V9lChoBmgJaA9DCP2k2qfjYmVAlIaUUpRoFU3oA2gWR0CHyHIV/MGHdX2UKGgGaAloD0MI0v9yLVobY0CUhpRSlGgVTegDaBZHQIfInVCojwB1fZQoaAZoCWgPQwhU5uYb0cJeQJSGlFKUaBVN6ANoFkdAh8tkvkBCD3V9lChoBmgJaA9DCCoAxjNoRDlAlIaUUpRoFUv3aBZHQIfPO/etSyd1fZQoaAZoCWgPQwjRdHYyOIlfQJSGlFKUaBVN6ANoFkdAh9hxdhRZU3V9lChoBmgJaA9DCLH34ov2qB3AlIaUUpRoFUvPaBZHQIffr/ffoA51fZQoaAZoCWgPQwgw16IFaNZRQJSGlFKUaBVLz2gWR0CH4xrt3OfNdX2UKGgGaAloD0MIMEs7NRfxYkCUhpRSlGgVTegDaBZHQIfma/RE4Nt1fZQoaAZoCWgPQwgAqyNHOldhQJSGlFKUaBVN6ANoFkdAh+nBWHUMHHV9lChoBmgJaA9DCGRA9nr3y2FAlIaUUpRoFU3oA2gWR0CH7LmvGIbgdX2UKGgGaAloD0MIrg6AuKvrUkCUhpRSlGgVS5VoFkdAh/Ir0z0pVnV9lChoBmgJaA9DCOrQ6Xk3DjRAlIaUUpRoFUvDaBZHQIf9iQYDT0B1fZQoaAZoCWgPQwhngXaHlAFjQJSGlFKUaBVN6ANoFkdAiAYaVlf7anV9lChoBmgJaA9DCESGVbyRIWJAlIaUUpRoFU3oA2gWR0CIB++j/MnrdX2UKGgGaAloD0MIeCgK9InlXECUhpRSlGgVTegDaBZHQIgUjd1uBMB1fZQoaAZoCWgPQwieJjPeViRLwJSGlFKUaBVL9WgWR0CIF9GXokiVdX2UKGgGaAloD0MIsoNKXMcLXUCUhpRSlGgVTegDaBZHQIgcLtZ3cHp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10b84eda162eb4cd6c2ec28c8046e886b9fd2e19098e17e934462652ab585911
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58bd17d3de7b932c93cc91b2d59f0b1d53c3a60de7b6ef430af01818591aa3d7
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (218 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 204.78909903661219, "std_reward": 19.112741101348163, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-17T12:27:20.852241"}