tinybee commited on
Commit
66be8d4
1 Parent(s): 55e00c9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: testlaibasettsgopdata
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # testlaibasettsgopdata
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0930
18
+ - Wer: 0.1682
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 6.2716 | 1.05 | 500 | 3.0550 | 1.0 |
52
+ | 1.8262 | 2.11 | 1000 | 0.2669 | 0.3023 |
53
+ | 0.5469 | 3.16 | 1500 | 0.1809 | 0.2281 |
54
+ | 0.3541 | 4.21 | 2000 | 0.1541 | 0.2185 |
55
+ | 0.3367 | 5.26 | 2500 | 0.1432 | 0.2054 |
56
+ | 0.2792 | 6.32 | 3000 | 0.1218 | 0.2023 |
57
+ | 0.2411 | 7.37 | 3500 | 0.1136 | 0.2029 |
58
+ | 0.2041 | 8.42 | 4000 | 0.1423 | 0.2025 |
59
+ | 0.2262 | 9.47 | 4500 | 0.1294 | 0.1968 |
60
+ | 0.1921 | 10.53 | 5000 | 0.1237 | 0.1952 |
61
+ | 0.1877 | 11.58 | 5500 | 0.1043 | 0.1890 |
62
+ | 0.176 | 12.63 | 6000 | 0.1272 | 0.1935 |
63
+ | 0.1236 | 13.68 | 6500 | 0.1352 | 0.1902 |
64
+ | 0.1473 | 14.74 | 7000 | 0.1257 | 0.1874 |
65
+ | 0.1748 | 15.79 | 7500 | 0.1190 | 0.1854 |
66
+ | 0.1147 | 16.84 | 8000 | 0.1213 | 0.1914 |
67
+ | 0.1508 | 17.89 | 8500 | 0.1262 | 0.1813 |
68
+ | 0.1061 | 18.95 | 9000 | 0.1148 | 0.1802 |
69
+ | 0.1182 | 20.0 | 9500 | 0.1034 | 0.1758 |
70
+ | 0.1144 | 21.05 | 10000 | 0.1123 | 0.1769 |
71
+ | 0.0885 | 22.11 | 10500 | 0.1043 | 0.1735 |
72
+ | 0.0797 | 23.16 | 11000 | 0.1004 | 0.1712 |
73
+ | 0.0729 | 24.21 | 11500 | 0.1045 | 0.1703 |
74
+ | 0.0718 | 25.26 | 12000 | 0.1064 | 0.1712 |
75
+ | 0.0668 | 26.32 | 12500 | 0.1050 | 0.1687 |
76
+ | 0.0599 | 27.37 | 13000 | 0.0965 | 0.1677 |
77
+ | 0.0702 | 28.42 | 13500 | 0.0930 | 0.1682 |
78
+ | 0.0942 | 29.47 | 14000 | 0.0959 | 0.1674 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.17.0
84
+ - Pytorch 2.5.1+cu121
85
+ - Datasets 1.18.3
86
+ - Tokenizers 0.20.3