File size: 1,924 Bytes
96727c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
---
library_name: transformers
license: apache-2.0
language:
- en
---
# Rhea-72b-v0.5

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64241c3d774cc340797429fc/97nXDuEhQUom3vaVcEvV-.jpeg)

The Rhea project is a project that conducts research on various learning methods to improve llm model performance.  We fine-tuned the existing model using the [nox](https://github.com/davidkim205/nox) framework. We built a dataset for SFT learning based on the currently open dataset, and created a dataset using SGD (Self-Generated Dataset Creation Method for DPO Learning) for DPO learning.

Our model ranked first on HuggingFace's Open LLM leaderboard.


## SGD : A Study on Self-Generated Dataset creation method for DPO Learning

This method proposes a novel method for generating datasets for DPO (Self-supervised Learning) models. We suggest a technique where sentences generated by the model are compared with the actual correct answers from an existing dataset, and sentences where the model's generated results do not match the correct answers are added. This enables the model to autonomously create training data, thereby enhancing the performance of DPO models.

## Model Details

* **Model Developers** :  davidkim(changyeon kim)
* **Repository** : [https://github.com/davidkim205/nox](https://github.com/davidkim205/nox)
* **base mode** : abacusai/Smaug-72B-v0.1
* **sft dataset** : will be updated soon.
* **dpo dataset** : will be updated soon.

## Evaluation
### [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
| **model**     | **average** | **arc** | **hellaswag** | **mmlu** | **truthfulQA** | **winogrande** | **GSM8k** |
| ------------- | ----------- | ------- | ------------- | -------- | -------------- | -------------- | --------- |
| Rhea-72b-v0.5 | 81.22       | 79.78   | 91.15         | 77.95    | 74.5           | 87.85          | 76.12     |