Text Generation
Transformers
mpt
Composer
MosaicML
llm-foundry
custom_code
File size: 19,277 Bytes
98424ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""A simple, flexible implementation of a GPT model.

Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
"""
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from .attention import attn_bias_shape, build_attn_bias
from .blocks import MPTBlock
from .custom_embedding import SharedEmbedding
from .norm import NORM_CLASS_REGISTRY
from .configuration_mpt import MPTConfig
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
from .meta_init_context import init_empty_weights
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
try:
    from .flash_attn_triton import flash_attn_func
except:
    pass
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]

class MPTPreTrainedModel(PreTrainedModel):
    config_class = MPTConfig
    base_model_prefix = 'model'
    _no_split_modules = ['MPTBlock']

class MPTModel(MPTPreTrainedModel):

    def __init__(self, config: MPTConfig):
        config._validate_config()
        super().__init__(config)
        self.attn_impl = config.attn_config['attn_impl']
        self.prefix_lm = config.attn_config['prefix_lm']
        self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
        self.alibi = config.attn_config['alibi']
        self.alibi_bias_max = config.attn_config['alibi_bias_max']
        if config.init_device == 'mixed':
            if dist.get_local_rank() == 0:
                config.init_device = 'cpu'
            else:
                config.init_device = 'meta'
        if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
            norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
            raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
        norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
        self.embedding_fraction = config.embedding_fraction
        self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
        if not self.alibi:
            self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
        self.emb_drop = nn.Dropout(config.emb_pdrop)
        self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
        self.norm_f = norm_class(config.d_model, device=config.init_device)
        if config.init_device != 'meta':
            print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.')
            self.apply(self.param_init_fn)
        self.is_causal = not self.prefix_lm
        self._attn_bias_initialized = False
        self.attn_bias = None
        self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
        if config.no_bias:
            for module in self.modules():
                if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
                    if config.verbose:
                        warnings.warn(f'Removing bias ({module.bias}) from {module}.')
                    module.register_parameter('bias', None)
        if config.verbose and config.verbose > 2:
            print(self)
        if 'verbose' not in self.config.init_config:
            self.config.init_config['verbose'] = self.config.verbose
        if self.config.init_config['verbose'] > 1:
            init_fn_name = self.config.init_config['name']
            warnings.warn(f'Using {init_fn_name} initialization.')

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, value):
        self.wte = value

    @torch.no_grad()
    def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
        if not self._attn_bias_initialized:
            if self.attn_bias_shape:
                self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
                self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
            self._attn_bias_initialized = True
        if self.attn_impl == 'flash':
            return (self.attn_bias, attention_mask)
        if self.attn_bias is not None:
            self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
        attn_bias = self.attn_bias
        if self.prefix_lm:
            assert isinstance(attn_bias, torch.Tensor)
            assert isinstance(prefix_mask, torch.Tensor)
            attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
        if self.attn_uses_sequence_id and sequence_id is not None:
            assert isinstance(attn_bias, torch.Tensor)
            attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
        if attention_mask is not None:
            s_k = attention_mask.shape[-1]
            if attn_bias is None:
                attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
            else:
                _s_k = max(0, attn_bias.size(-1) - s_k)
                attn_bias = attn_bias[:, :, :, _s_k:]
            if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
                raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
            min_val = torch.finfo(attn_bias.dtype).min
            attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
        return (attn_bias, None)

    def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
        (s_k, s_q) = attn_bias.shape[-2:]
        if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
            raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
        seq_len = prefix_mask.shape[-1]
        if seq_len > self.config.max_seq_len:
            raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
        attn_bias = attn_bias[..., :seq_len, :seq_len]
        causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
        prefix = prefix_mask.view(-1, 1, 1, seq_len)
        cannot_attend = ~torch.logical_or(causal, prefix.bool())
        min_val = torch.finfo(attn_bias.dtype).min
        attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
        return attn_bias

    def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
        seq_len = sequence_id.shape[-1]
        if seq_len > self.config.max_seq_len:
            raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
        attn_bias = attn_bias[..., :seq_len, :seq_len]
        cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
        min_val = torch.finfo(attn_bias.dtype).min
        attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
        return attn_bias

    def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None):
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if attention_mask is not None:
            attention_mask = attention_mask.bool()
        if prefix_mask is not None:
            prefix_mask = prefix_mask.bool()
        if not return_dict:
            raise NotImplementedError('return_dict False is not implemented yet for MPT')
        if output_attentions:
            if self.attn_impl != 'torch':
                raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
        if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
            raise NotImplementedError('MPT does not support training with left padding.')
        if self.prefix_lm and prefix_mask is None:
            raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
        if inputs_embeds is not None:
            raise NotImplementedError('inputs_embeds is not implemented for MPT.')
        if self.training:
            if self.attn_uses_sequence_id and sequence_id is None:
                raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
            elif self.attn_uses_sequence_id is False and sequence_id is not None:
                warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
        S = input_ids.size(1)
        assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
        tok_emb = self.wte(input_ids)
        if self.alibi:
            x = tok_emb
        else:
            past_position = 0
            if past_key_values is not None:
                if len(past_key_values) != self.config.n_layers:
                    raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
                past_position = past_key_values[0][0].size(1)
                if self.attn_impl == 'torch':
                    past_position = past_key_values[0][0].size(3)
            if S + past_position > self.config.max_seq_len:
                raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
            pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
            if attention_mask is not None:
                pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
            pos_emb = self.wpe(pos)
            x = tok_emb + pos_emb
        if self.embedding_fraction == 1:
            x = self.emb_drop(x)
        else:
            x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
            assert isinstance(self.emb_drop, nn.Module)
            x = self.emb_drop(x_shrunk)
        (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
        if use_cache and past_key_values is None:
            past_key_values = [() for _ in range(self.config.n_layers)]
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        for (b_idx, block) in enumerate(self.blocks):
            if output_hidden_states:
                assert all_hidden_states is not None
                all_hidden_states = all_hidden_states + (x,)
            past_key_value = past_key_values[b_idx] if past_key_values is not None else None
            (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
            if past_key_values is not None:
                past_key_values[b_idx] = past_key_value
            if output_attentions:
                assert all_self_attns is not None
                all_self_attns = all_self_attns + (attn_weights,)
        x = self.norm_f(x)
        if output_hidden_states:
            assert all_hidden_states is not None
            all_hidden_states = all_hidden_states + (x,)
        return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns)

    def param_init_fn(self, module):
        init_fn_name = self.config.init_config['name']
        MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)

    def fsdp_wrap_fn(self, module):
        return isinstance(module, MPTBlock)

    def activation_checkpointing_fn(self, module):
        return isinstance(module, MPTBlock)

class MPTForCausalLM(MPTPreTrainedModel):

    def __init__(self, config: MPTConfig):
        super().__init__(config)
        if not config.tie_word_embeddings:
            raise ValueError('MPTForCausalLM only supports tied word embeddings')
        print(f'Instantiating an MPTForCausalLM model from {__file__}')
        self.transformer = MPTModel(config)
        for child in self.transformer.children():
            if isinstance(child, torch.nn.ModuleList):
                continue
            if isinstance(child, torch.nn.Module):
                child._fsdp_wrap = True
        self.logit_scale = None
        if config.logit_scale is not None:
            logit_scale = config.logit_scale
            if isinstance(logit_scale, str):
                if logit_scale == 'inv_sqrt_d_model':
                    logit_scale = 1 / math.sqrt(config.d_model)
                else:
                    raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
            self.logit_scale = logit_scale

    def get_input_embeddings(self):
        return self.transformer.wte

    def set_input_embeddings(self, value):
        self.transformer.wte = value

    def get_output_embeddings(self):
        return self.transformer.wte

    def set_output_embeddings(self, new_embeddings):
        self.transformer.wte = new_embeddings

    def set_decoder(self, decoder):
        self.transformer = decoder

    def get_decoder(self):
        return self.transformer

    def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None):
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if inputs_embeds is not None:
            raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
        outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
        logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
        if self.logit_scale is not None:
            if self.logit_scale == 0:
                warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
            logits *= self.logit_scale
        loss = None
        if labels is not None:
            labels = torch.roll(labels, shifts=-1)
            labels[:, -1] = -100
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
        return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)

    def param_init_fn(self, module):
        init_fn_name = self.config.init_config['name']
        MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)

    def fsdp_wrap_fn(self, module):
        return isinstance(module, MPTBlock)

    def activation_checkpointing_fn(self, module):
        return isinstance(module, MPTBlock)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        if inputs_embeds is not None:
            raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
        attention_mask = kwargs['attention_mask'].bool()
        if attention_mask[:, -1].sum() != attention_mask.shape[0]:
            raise NotImplementedError('MPT does not support generation with right padding.')
        if self.transformer.attn_uses_sequence_id and self.training:
            sequence_id = torch.zeros_like(input_ids[:1])
        else:
            sequence_id = None
        if past_key_values is not None:
            input_ids = input_ids[:, -1].unsqueeze(-1)
        if self.transformer.prefix_lm:
            prefix_mask = torch.ones_like(attention_mask)
            if kwargs.get('use_cache') == False:
                raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
        else:
            prefix_mask = None
        return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        """Used by HuggingFace generate when using beam search with kv-caching.

        See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
        for an example in transformers.
        """
        reordered_past = []
        for layer_past in past_key_values:
            reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
        return reordered_past