tjluyao commited on
Commit
45a956e
·
verified ·
1 Parent(s): d38ffd0

Upload 14 files

Browse files
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - llama-factory
6
+ - lora
7
+ - generated_from_trainer
8
+ base_model: baichuan-inc/Baichuan2-7B-Chat
9
+ model-index:
10
+ - name: lora1
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # lora1
18
+
19
+ This model is a fine-tuned version of [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) on the identity and the alpaca_en_demo datasets.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1241
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0001
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 2
46
+ - total_train_batch_size: 16
47
+ - total_eval_batch_size: 2
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: cosine
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 2
52
+
53
+ ### Training results
54
+
55
+
56
+
57
+ ### Framework versions
58
+
59
+ - PEFT 0.11.1
60
+ - Transformers 4.41.2
61
+ - Pytorch 2.2.1+cu121
62
+ - Datasets 2.18.0
63
+ - Tokenizers 0.19.1
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "baichuan-inc/Baichuan2-7B-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "W_pack",
24
+ "down_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "up_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:193e9efc4360517708a7e800fd7703064a3ef9d8856fef033f5dbe4286321a5d
3
+ size 71607456
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 1.1241382360458374,
4
+ "eval_runtime": 2.8045,
5
+ "eval_samples_per_second": 39.222,
6
+ "eval_steps_per_second": 19.611,
7
+ "total_flos": 3.343333284695245e+16,
8
+ "train_loss": 1.1469936832304923,
9
+ "train_runtime": 212.0457,
10
+ "train_samples_per_second": 9.253,
11
+ "train_steps_per_second": 0.585
12
+ }
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "eval_loss": 1.1241382360458374,
4
+ "eval_runtime": 2.8045,
5
+ "eval_samples_per_second": 39.222,
6
+ "eval_steps_per_second": 19.611
7
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenization_baichuan.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {
37
+ "vocab_file": {},
38
+ "tokenizer_file": {},
39
+ }
40
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
41
+
42
+
43
+ class BaichuanTokenizer(PreTrainedTokenizer):
44
+ """
45
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
46
+
47
+ Args:
48
+ vocab_file (`str`):
49
+ Path to the vocabulary file.
50
+ """
51
+
52
+ vocab_files_names = VOCAB_FILES_NAMES
53
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
54
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
55
+ model_input_names = ["input_ids", "attention_mask"]
56
+
57
+ def __init__(
58
+ self,
59
+ vocab_file,
60
+ unk_token="<unk>",
61
+ bos_token="<s>",
62
+ eos_token="</s>",
63
+ pad_token=None,
64
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
65
+ add_bos_token=True,
66
+ add_eos_token=False,
67
+ clean_up_tokenization_spaces=False,
68
+ **kwargs,
69
+ ):
70
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
72
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
+
76
+ self.vocab_file = vocab_file
77
+ self.add_bos_token = add_bos_token
78
+ self.add_eos_token = add_eos_token
79
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
+ self.sp_model.Load(vocab_file)
81
+
82
+ super().__init__(
83
+ bos_token=bos_token,
84
+ eos_token=eos_token,
85
+ unk_token=unk_token,
86
+ pad_token=pad_token,
87
+ add_bos_token=add_bos_token,
88
+ add_eos_token=add_eos_token,
89
+ sp_model_kwargs=self.sp_model_kwargs,
90
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
91
+ **kwargs,
92
+ )
93
+
94
+ def __getstate__(self):
95
+ state = self.__dict__.copy()
96
+ state["sp_model"] = None
97
+ return state
98
+
99
+ def __setstate__(self, d):
100
+ self.__dict__ = d
101
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
102
+ self.sp_model.Load(self.vocab_file)
103
+
104
+ @property
105
+ def vocab_size(self):
106
+ """Returns vocab size"""
107
+ return self.sp_model.get_piece_size()
108
+
109
+ def get_vocab(self):
110
+ """Returns vocab as a dict"""
111
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
112
+ vocab.update(self.added_tokens_encoder)
113
+ return vocab
114
+
115
+ def _tokenize(self, text):
116
+ """Returns a tokenized string."""
117
+ return self.sp_model.encode(text, out_type=str)
118
+
119
+ def _convert_token_to_id(self, token):
120
+ """Converts a token (str) in an id using the vocab."""
121
+ return self.sp_model.piece_to_id(token)
122
+
123
+ def _convert_id_to_token(self, index):
124
+ """Converts an index (integer) in a token (str) using the vocab."""
125
+ token = self.sp_model.IdToPiece(index)
126
+ return token
127
+
128
+ def convert_tokens_to_string(self, tokens):
129
+ """Converts a sequence of tokens (string) in a single string."""
130
+ current_sub_tokens = []
131
+ out_string = ""
132
+ prev_is_special = False
133
+ for i, token in enumerate(tokens):
134
+ # make sure that special tokens are not decoded using sentencepiece model
135
+ if token in self.all_special_tokens:
136
+ if not prev_is_special and i != 0:
137
+ out_string += " "
138
+ out_string += self.sp_model.decode(current_sub_tokens) + token
139
+ prev_is_special = True
140
+ current_sub_tokens = []
141
+ else:
142
+ current_sub_tokens.append(token)
143
+ prev_is_special = False
144
+ out_string += self.sp_model.decode(current_sub_tokens)
145
+ return out_string
146
+
147
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
148
+ """
149
+ Save the vocabulary and special tokens file to a directory.
150
+
151
+ Args:
152
+ save_directory (`str`):
153
+ The directory in which to save the vocabulary.
154
+
155
+ Returns:
156
+ `Tuple(str)`: Paths to the files saved.
157
+ """
158
+ if not os.path.isdir(save_directory):
159
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
160
+ return
161
+ out_vocab_file = os.path.join(
162
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
163
+ )
164
+
165
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
166
+ copyfile(self.vocab_file, out_vocab_file)
167
+ elif not os.path.isfile(self.vocab_file):
168
+ with open(out_vocab_file, "wb") as fi:
169
+ content_spiece_model = self.sp_model.serialized_model_proto()
170
+ fi.write(content_spiece_model)
171
+
172
+ return (out_vocab_file,)
173
+
174
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
175
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
176
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
177
+
178
+ output = bos_token_id + token_ids_0 + eos_token_id
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + bos_token_id + token_ids_1 + eos_token_id
182
+
183
+ return output
184
+
185
+ def get_special_tokens_mask(
186
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
187
+ ) -> List[int]:
188
+ """
189
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
190
+ special tokens using the tokenizer `prepare_for_model` method.
191
+
192
+ Args:
193
+ token_ids_0 (`List[int]`):
194
+ List of IDs.
195
+ token_ids_1 (`List[int]`, *optional*):
196
+ Optional second list of IDs for sequence pairs.
197
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
198
+ Whether or not the token list is already formatted with special tokens for the model.
199
+
200
+ Returns:
201
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
202
+ """
203
+ if already_has_special_tokens:
204
+ return super().get_special_tokens_mask(
205
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
206
+ )
207
+
208
+ bos_token_id = [1] if self.add_bos_token else []
209
+ eos_token_id = [1] if self.add_eos_token else []
210
+
211
+ if token_ids_1 is None:
212
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
213
+ return (
214
+ bos_token_id
215
+ + ([0] * len(token_ids_0))
216
+ + eos_token_id
217
+ + bos_token_id
218
+ + ([0] * len(token_ids_1))
219
+ + eos_token_id
220
+ )
221
+
222
+ def create_token_type_ids_from_sequences(
223
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
224
+ ) -> List[int]:
225
+ """
226
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
227
+ sequence pair mask has the following format:
228
+
229
+ ```
230
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
231
+ | first sequence | second sequence |
232
+ ```
233
+
234
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
235
+
236
+ Args:
237
+ token_ids_0 (`List[int]`):
238
+ List of ids.
239
+ token_ids_1 (`List[int]`, *optional*):
240
+ Optional second list of IDs for sequence pairs.
241
+
242
+ Returns:
243
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
244
+ """
245
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
246
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
247
+
248
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
249
+
250
+ if token_ids_1 is not None:
251
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
252
+
253
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
3
+ size 2001107
tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "auto_map": {
31
+ "AutoTokenizer": [
32
+ "tokenization_baichuan.BaichuanTokenizer",
33
+ null
34
+ ]
35
+ },
36
+ "bos_token": "<s>",
37
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<reserved_106>' + content + '<reserved_107>' }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
38
+ "clean_up_tokenization_spaces": false,
39
+ "eos_token": "</s>",
40
+ "model_max_length": 4096,
41
+ "pad_token": "<unk>",
42
+ "padding_side": "right",
43
+ "sp_model_kwargs": {},
44
+ "split_special_tokens": false,
45
+ "tokenizer_class": "BaichuanTokenizer",
46
+ "unk_token": "<unk>",
47
+ "use_fast": false
48
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "total_flos": 3.343333284695245e+16,
4
+ "train_loss": 1.1469936832304923,
5
+ "train_runtime": 212.0457,
6
+ "train_samples_per_second": 9.253,
7
+ "train_steps_per_second": 0.585
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 10, "total_steps": 124, "loss": 1.4799, "learning_rate": 7.692307692307693e-05, "epoch": 0.16129032258064516, "percentage": 8.06, "elapsed_time": "0:00:15", "remaining_time": "0:03:01", "throughput": "0.00", "total_tokens": 0}
2
+ {"current_steps": 20, "total_steps": 124, "loss": 1.2357, "learning_rate": 9.902193239806635e-05, "epoch": 0.3225806451612903, "percentage": 16.13, "elapsed_time": "0:00:32", "remaining_time": "0:02:50", "throughput": "0.00", "total_tokens": 0}
3
+ {"current_steps": 30, "total_steps": 124, "loss": 1.1836, "learning_rate": 9.432328436130493e-05, "epoch": 0.4838709677419355, "percentage": 24.19, "elapsed_time": "0:00:49", "remaining_time": "0:02:34", "throughput": "0.00", "total_tokens": 0}
4
+ {"current_steps": 40, "total_steps": 124, "loss": 1.1089, "learning_rate": 8.609780469772623e-05, "epoch": 0.6451612903225806, "percentage": 32.26, "elapsed_time": "0:01:06", "remaining_time": "0:02:18", "throughput": "0.00", "total_tokens": 0}
5
+ {"current_steps": 50, "total_steps": 124, "loss": 1.1531, "learning_rate": 7.500000000000001e-05, "epoch": 0.8064516129032258, "percentage": 40.32, "elapsed_time": "0:01:24", "remaining_time": "0:02:04", "throughput": "0.00", "total_tokens": 0}
6
+ {"current_steps": 60, "total_steps": 124, "loss": 1.1684, "learning_rate": 6.191292957115825e-05, "epoch": 0.967741935483871, "percentage": 48.39, "elapsed_time": "0:01:40", "remaining_time": "0:01:46", "throughput": "0.00", "total_tokens": 0}
7
+ {"current_steps": 70, "total_steps": 124, "loss": 1.1087, "learning_rate": 4.78779398401926e-05, "epoch": 1.129032258064516, "percentage": 56.45, "elapsed_time": "0:01:57", "remaining_time": "0:01:30", "throughput": "0.00", "total_tokens": 0}
8
+ {"current_steps": 80, "total_steps": 124, "loss": 1.13, "learning_rate": 3.401180377143774e-05, "epoch": 1.2903225806451613, "percentage": 64.52, "elapsed_time": "0:02:14", "remaining_time": "0:01:13", "throughput": "0.00", "total_tokens": 0}
9
+ {"current_steps": 90, "total_steps": 124, "loss": 1.0524, "learning_rate": 2.141785853707607e-05, "epoch": 1.4516129032258065, "percentage": 72.58, "elapsed_time": "0:02:32", "remaining_time": "0:00:57", "throughput": "0.00", "total_tokens": 0}
10
+ {"current_steps": 100, "total_steps": 124, "loss": 1.0149, "learning_rate": 1.1098212284078036e-05, "epoch": 1.6129032258064515, "percentage": 80.65, "elapsed_time": "0:02:49", "remaining_time": "0:00:40", "throughput": "0.00", "total_tokens": 0}
11
+ {"current_steps": 110, "total_steps": 124, "loss": 1.0677, "learning_rate": 3.87400575837657e-06, "epoch": 1.7741935483870968, "percentage": 88.71, "elapsed_time": "0:03:08", "remaining_time": "0:00:23", "throughput": "0.00", "total_tokens": 0}
12
+ {"current_steps": 120, "total_steps": 124, "loss": 1.0709, "learning_rate": 3.2007361901485455e-07, "epoch": 1.935483870967742, "percentage": 96.77, "elapsed_time": "0:03:23", "remaining_time": "0:00:06", "throughput": "0.00", "total_tokens": 0}
13
+ {"current_steps": 124, "total_steps": 124, "epoch": 2.0, "percentage": 100.0, "elapsed_time": "0:03:29", "remaining_time": "0:00:00", "throughput": "0.00", "total_tokens": 0}
trainer_state.json ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 124,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.16129032258064516,
13
+ "grad_norm": 1.217032551765442,
14
+ "learning_rate": 7.692307692307693e-05,
15
+ "loss": 1.4799,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.3225806451612903,
20
+ "grad_norm": 0.49437594413757324,
21
+ "learning_rate": 9.902193239806635e-05,
22
+ "loss": 1.2357,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.4838709677419355,
27
+ "grad_norm": 0.38023412227630615,
28
+ "learning_rate": 9.432328436130493e-05,
29
+ "loss": 1.1836,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.6451612903225806,
34
+ "grad_norm": 0.30302199721336365,
35
+ "learning_rate": 8.609780469772623e-05,
36
+ "loss": 1.1089,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.8064516129032258,
41
+ "grad_norm": 0.3546346127986908,
42
+ "learning_rate": 7.500000000000001e-05,
43
+ "loss": 1.1531,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.967741935483871,
48
+ "grad_norm": 0.32698196172714233,
49
+ "learning_rate": 6.191292957115825e-05,
50
+ "loss": 1.1684,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 1.129032258064516,
55
+ "grad_norm": 0.40984147787094116,
56
+ "learning_rate": 4.78779398401926e-05,
57
+ "loss": 1.1087,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 1.2903225806451613,
62
+ "grad_norm": 0.6768341064453125,
63
+ "learning_rate": 3.401180377143774e-05,
64
+ "loss": 1.13,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 1.4516129032258065,
69
+ "grad_norm": 0.38988226652145386,
70
+ "learning_rate": 2.141785853707607e-05,
71
+ "loss": 1.0524,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 1.6129032258064515,
76
+ "grad_norm": 0.43906646966934204,
77
+ "learning_rate": 1.1098212284078036e-05,
78
+ "loss": 1.0149,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 1.7741935483870968,
83
+ "grad_norm": 0.7597775459289551,
84
+ "learning_rate": 3.87400575837657e-06,
85
+ "loss": 1.0677,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 1.935483870967742,
90
+ "grad_norm": 0.4260946810245514,
91
+ "learning_rate": 3.2007361901485455e-07,
92
+ "loss": 1.0709,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 2.0,
97
+ "step": 124,
98
+ "total_flos": 3.343333284695245e+16,
99
+ "train_loss": 1.1469936832304923,
100
+ "train_runtime": 212.0457,
101
+ "train_samples_per_second": 9.253,
102
+ "train_steps_per_second": 0.585
103
+ }
104
+ ],
105
+ "logging_steps": 10,
106
+ "max_steps": 124,
107
+ "num_input_tokens_seen": 0,
108
+ "num_train_epochs": 2,
109
+ "save_steps": 500,
110
+ "stateful_callbacks": {
111
+ "TrainerControl": {
112
+ "args": {
113
+ "should_epoch_stop": false,
114
+ "should_evaluate": false,
115
+ "should_log": false,
116
+ "should_save": false,
117
+ "should_training_stop": false
118
+ },
119
+ "attributes": {}
120
+ }
121
+ },
122
+ "total_flos": 3.343333284695245e+16,
123
+ "train_batch_size": 8,
124
+ "trial_name": null,
125
+ "trial_params": null
126
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b6a75705aea085b954f6ffa255790c2959a722f5e0351c026567198c802a6f7
3
+ size 5240
training_loss.png ADDED