tlwu commited on
Commit
ae6d79d
1 Parent(s): 12ddde0

update doc

Browse files
Files changed (1) hide show
  1. README.md +4 -22
README.md CHANGED
@@ -14,11 +14,13 @@ tags:
14
  - text-to-image
15
  ---
16
 
17
- # Stable Diffusion XL Turbo for ONNX Runtime
18
 
19
  ## Introduction
20
 
21
- This repository hosts the optimized versions of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider. The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
 
 
22
  ```
23
  python stable_diffusion_xl.py --provider cuda --model_id stabilityai/sdxl-turbo --optimize --use_fp16_fixed_vae
24
  ```
@@ -34,26 +36,6 @@ See the [usage instructions](#usage-example) for how to run the SDXL pipeline wi
34
 
35
  The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80).
36
 
37
- The Canny control net is converted from [diffusers/controlnet-canny-sdxl-1.0](https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0).
38
-
39
- ## Performance Comparison
40
-
41
- #### Latency for SDXL-Turbo
42
-
43
- Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
44
-
45
- | Engine | Batch Size | Steps | PyTorch 2.1 + Diffusers | ONNX Runtime Demo |
46
- |-------------|------------|------ | ----------------|-------------------|
47
- | Static | 1 | 1 | 109.4 ms | 49.5 ms |
48
- | Static | 4 | 1 | 247.0 ms | 143.1 ms |
49
- | Static | 1 | 4 | 171.1 ms | 104.1 ms |
50
- | Static | 4 | 4 | 390.5 ms | 271.69 ms |
51
-
52
-
53
- Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
54
-
55
- For PyTorch 2.1, the UNet use channel last (NHWC) format, and compile the UNet with mode `reduce-overhead`. See [benchmark script](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/benchmark_controlnet.py) for detail.
56
-
57
  ## Usage Example
58
 
59
  Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps:
 
14
  - text-to-image
15
  ---
16
 
17
+ # Stable Diffusion XL Turbo for ONNX Runtime CUDA
18
 
19
  ## Introduction
20
 
21
+ This repository hosts the optimized onnx models of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider for Nvidia GPUs. It cannot run in other providers like CPU or DirectML.
22
+
23
+ The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
24
  ```
25
  python stable_diffusion_xl.py --provider cuda --model_id stabilityai/sdxl-turbo --optimize --use_fp16_fixed_vae
26
  ```
 
36
 
37
  The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80).
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  ## Usage Example
40
 
41
  Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps: