--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-japanese tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec-jdrt-RTSplit_and_SpeakerSplitModel-0107-5 results: [] --- # wav2vec-jdrt-RTSplit_and_SpeakerSplitModel-0107-5 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-japanese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-japanese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0032 - Wer: 0.1835 - Cer: 0.1557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 14.5102 | 1.0 | 60 | 13.5418 | 1.0011 | 1.2966 | | 6.2989 | 2.0 | 120 | 4.6126 | 1.0 | 0.8736 | | 2.208 | 3.0 | 180 | 1.7112 | 0.9993 | 0.8160 | | 1.098 | 4.0 | 240 | 0.8765 | 0.8410 | 0.5698 | | 0.8201 | 5.0 | 300 | 0.6964 | 0.8221 | 0.5340 | | 0.7499 | 6.0 | 360 | 0.6299 | 0.8217 | 0.5305 | | 0.6753 | 7.0 | 420 | 0.5998 | 0.7691 | 0.4482 | | 0.6003 | 8.0 | 480 | 0.5502 | 0.7394 | 0.4564 | | 0.5732 | 9.0 | 540 | 0.5047 | 0.7098 | 0.3906 | | 0.5404 | 10.0 | 600 | 0.4694 | 0.6679 | 0.3283 | | 0.4889 | 11.0 | 660 | 0.3979 | 0.6379 | 0.3017 | | 0.4401 | 12.0 | 720 | 0.3255 | 0.5849 | 0.2792 | | 0.4295 | 13.0 | 780 | 0.2853 | 0.5044 | 0.2772 | | 0.3216 | 14.0 | 840 | 0.2204 | 0.4511 | 0.2234 | | 0.2583 | 15.0 | 900 | 0.1492 | 0.3929 | 0.2130 | | 0.226 | 16.0 | 960 | 0.1007 | 0.2817 | 0.1690 | | 0.2304 | 17.0 | 1020 | 0.0694 | 0.2439 | 0.1699 | | 0.1487 | 18.0 | 1080 | 0.0471 | 0.2142 | 0.1758 | | 0.1045 | 19.0 | 1140 | 0.0305 | 0.2168 | 0.1686 | | 0.1104 | 20.0 | 1200 | 0.0256 | 0.2072 | 0.1625 | | 0.094 | 21.0 | 1260 | 0.0226 | 0.2272 | 0.1760 | | 0.0987 | 22.0 | 1320 | 0.0129 | 0.2013 | 0.1900 | | 0.0753 | 23.0 | 1380 | 0.0110 | 0.2053 | 0.1786 | | 0.0544 | 24.0 | 1440 | 0.0091 | 0.1909 | 0.1858 | | 0.0684 | 25.0 | 1500 | 0.0083 | 0.1901 | 0.1728 | | 0.0723 | 26.0 | 1560 | 0.0083 | 0.2027 | 0.1854 | | 0.061 | 27.0 | 1620 | 0.0061 | 0.2020 | 0.1779 | | 0.0635 | 28.0 | 1680 | 0.0059 | 0.1964 | 0.1818 | | 0.0336 | 29.0 | 1740 | 0.0048 | 0.1887 | 0.1574 | | 0.0455 | 30.0 | 1800 | 0.0036 | 0.1842 | 0.1694 | | 0.0672 | 31.0 | 1860 | 0.0038 | 0.1838 | 0.1507 | | 0.0315 | 32.0 | 1920 | 0.0033 | 0.1853 | 0.1555 | | 0.0466 | 33.0 | 1980 | 0.0033 | 0.1827 | 0.1569 | | 0.0491 | 34.0 | 2040 | 0.0035 | 0.1835 | 0.1556 | | 0.0315 | 35.0 | 2100 | 0.0032 | 0.1835 | 0.1557 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0