model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bert-base-tweetner7-2020-2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6180153025736147
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6195955369595537
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6164431082331174
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5683670244315128
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.569694944056475
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.5712308118378218
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7652789052533921
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7674148156762414
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7631548513935469
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6140546569994423
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6636528028933092
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5713544369486248
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5710807917000799
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6216528993817231
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5337579395628287
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7250418293363079
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7836045810729355
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6746237675142709
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bert-base-tweetner7-2020-2021-continuous
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [tner/bert-base-tweetner-2020](https://huggingface.co/tner/bert-base-tweetner-2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6180153025736147
|
94 |
+
- Precision (micro): 0.6195955369595537
|
95 |
+
- Recall (micro): 0.6164431082331174
|
96 |
+
- F1 (macro): 0.5683670244315128
|
97 |
+
- Precision (macro): 0.569694944056475
|
98 |
+
- Recall (macro): 0.5712308118378218
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.47404505386875617
|
104 |
+
- creative_work: 0.3821742066171506
|
105 |
+
- event: 0.44045368620037806
|
106 |
+
- group: 0.5773490532332975
|
107 |
+
- location: 0.6442244224422442
|
108 |
+
- person: 0.8072178236052291
|
109 |
+
- product: 0.6531049250535331
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6091071020409725, 0.6281541017445712]
|
114 |
+
- 95%: [0.6068108439278024, 0.6300879315353104]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6091071020409725, 0.6281541017445712]
|
117 |
+
- 95%: [0.6068108439278024, 0.6300879315353104]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-base-tweetner7-2020-2021-continuous/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bert-base-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bert-base-tweetner7-2020-2021-continuous")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: tner/bert-base-tweetner-2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-base-tweetner7-2020-2021-continuous/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6148409893992933, "micro/f1_ci": {}, "micro/recall": 0.609, "micro/precision": 0.6207951070336392, "macro/f1": 0.5701559407018298, "macro/f1_ci": {}, "macro/recall": 0.5658302273189542, "macro/precision": 0.5779864735020361, "per_entity_metric": {"corporation": {"f1": 0.5486725663716814, "f1_ci": {}, "precision": 0.5, "recall": 0.6078431372549019}, "creative_work": {"f1": 0.4335664335664336, "f1_ci": {}, "precision": 0.4492753623188406, "recall": 0.4189189189189189}, "event": {"f1": 0.3939393939393939, "f1_ci": {}, "precision": 0.39097744360902253, "recall": 0.3969465648854962}, "group": {"f1": 0.6066350710900474, "f1_ci": {}, "precision": 0.6564102564102564, "recall": 0.5638766519823789}, "location": {"f1": 0.5815602836879432, "f1_ci": {}, "precision": 0.5942028985507246, "recall": 0.5694444444444444}, "person": {"f1": 0.795138888888889, "f1_ci": {}, "precision": 0.7815699658703071, "recall": 0.8091872791519434}, "product": {"f1": 0.6315789473684211, "f1_ci": {}, "precision": 0.673469387755102, "recall": 0.5945945945945946}}}, "2021.test": {"micro/f1": 0.6180153025736147, "micro/f1_ci": {"90": [0.6091071020409725, 0.6281541017445712], "95": [0.6068108439278024, 0.6300879315353104]}, "micro/recall": 0.6164431082331174, "micro/precision": 0.6195955369595537, "macro/f1": 0.5683670244315128, "macro/f1_ci": {"90": [0.5585356632073021, 0.5783570229745414], "95": [0.5566645989492551, 0.5802489470130128]}, "macro/recall": 0.5712308118378218, "macro/precision": 0.569694944056475, "per_entity_metric": {"corporation": {"f1": 0.47404505386875617, "f1_ci": {"90": [0.4490379133679127, 0.4990727568196289], "95": [0.4441134904075242, 0.5039688442060536]}, "precision": 0.4238178633975482, "recall": 0.5377777777777778}, "creative_work": {"f1": 0.3821742066171506, "f1_ci": {"90": [0.35211960334500386, 0.4128517316017316], "95": [0.34730538922155685, 0.41977224730637996]}, "precision": 0.37733333333333335, "recall": 0.387140902872777}, "event": {"f1": 0.44045368620037806, "f1_ci": {"90": [0.41686079777668794, 0.4635629737606736], "95": [0.41271162200014244, 0.4690119025876094]}, "precision": 0.4582104228121927, "recall": 0.4240218380345769}, "group": {"f1": 0.5773490532332975, "f1_ci": {"90": [0.5552643235358515, 0.6014339048948261], "95": [0.5519955277939024, 0.604945054945055]}, "precision": 0.6307572209211554, "recall": 0.5322793148880105}, "location": {"f1": 0.6442244224422442, "f1_ci": {"90": [0.616027444804906, 0.6713668122570161], "95": [0.6104101752199371, 0.6748156291439195]}, "precision": 0.6107634543178974, "recall": 0.6815642458100558}, "person": {"f1": 0.8072178236052291, "f1_ci": {"90": [0.7949127874965743, 0.8191705751547954], "95": [0.7917901949040049, 0.8214841028371646]}, "precision": 0.8061787421846267, "recall": 0.8082595870206489}, "product": {"f1": 0.6531049250535331, "f1_ci": {"90": [0.6304396220938515, 0.674394710721743], "95": [0.6260682322959881, 0.678272448791214]}, "precision": 0.6808035714285714, "recall": 0.6275720164609053}}}, "2020.test": {"micro/f1": 0.6140546569994423, "micro/f1_ci": {"90": [0.5935696915654249, 0.633132472774783], "95": [0.5888371280910468, 0.6376608622599]}, "micro/recall": 0.5713544369486248, "micro/precision": 0.6636528028933092, "macro/f1": 0.5710807917000799, "macro/f1_ci": {"90": [0.5478250595501791, 0.592402271276497], "95": [0.5441015143150139, 0.5966065608106168]}, "macro/recall": 0.5337579395628287, "macro/precision": 0.6216528993817231, "per_entity_metric": {"corporation": {"f1": 0.5441176470588235, "f1_ci": {"90": [0.48876663303573126, 0.592100492100492], "95": [0.4804129604224749, 0.600520698653001]}, "precision": 0.511520737327189, "recall": 0.581151832460733}, "creative_work": {"f1": 0.42405063291139244, "f1_ci": {"90": [0.364188207958176, 0.48667350928641245], "95": [0.34920102269095554, 0.4985368691673284]}, "precision": 0.48905109489051096, "recall": 0.3743016759776536}, "event": {"f1": 0.4146341463414634, "f1_ci": {"90": [0.36212023989801767, 0.4683313491581428], "95": [0.3502082112930749, 0.4778481449922852]}, "precision": 0.44933920704845814, "recall": 0.3849056603773585}, "group": {"f1": 0.51252408477842, "f1_ci": {"90": [0.4573452121522882, 0.5658367176663969], "95": [0.44864981072900945, 0.5744367822180436]}, "precision": 0.6394230769230769, "recall": 0.42765273311897106}, "location": {"f1": 0.6349206349206349, "f1_ci": {"90": [0.5640853553605231, 0.6964856230031949], "95": [0.5436840439003798, 0.7125786608600979]}, "precision": 0.6666666666666666, "recall": 0.6060606060606061}, "person": {"f1": 0.798951048951049, "f1_ci": {"90": [0.7706629441193157, 0.8219729070364663], "95": [0.7663099298662476, 0.8272448572277301]}, "precision": 0.833941605839416, "recall": 0.7667785234899329}, "product": {"f1": 0.6683673469387755, "f1_ci": {"90": [0.6137868712702471, 0.7193481343491076], "95": [0.6005505949083819, 0.72868637441356]}, "precision": 0.7616279069767442, "recall": 0.5954545454545455}}}, "2021.test (span detection)": {"micro/f1": 0.7652789052533921, "micro/f1_ci": {}, "micro/recall": 0.7631548513935469, "micro/precision": 0.7674148156762414, "macro/f1": 0.7652789052533921, "macro/f1_ci": {}, "macro/recall": 0.7631548513935469, "macro/precision": 0.7674148156762414}, "2020.test (span detection)": {"micro/f1": 0.7250418293363079, "micro/f1_ci": {}, "micro/recall": 0.6746237675142709, "micro/precision": 0.7836045810729355, "macro/f1": 0.7250418293363079, "macro/f1_ci": {}, "macro/recall": 0.6746237675142709, "macro/precision": 0.7836045810729355}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6140546569994423, "micro/f1_ci": {"90": [0.5935696915654249, 0.633132472774783], "95": [0.5888371280910468, 0.6376608622599]}, "micro/recall": 0.5713544369486248, "micro/precision": 0.6636528028933092, "macro/f1": 0.5710807917000799, "macro/f1_ci": {"90": [0.5478250595501791, 0.592402271276497], "95": [0.5441015143150139, 0.5966065608106168]}, "macro/recall": 0.5337579395628287, "macro/precision": 0.6216528993817231, "per_entity_metric": {"corporation": {"f1": 0.5441176470588235, "f1_ci": {"90": [0.48876663303573126, 0.592100492100492], "95": [0.4804129604224749, 0.600520698653001]}, "precision": 0.511520737327189, "recall": 0.581151832460733}, "creative_work": {"f1": 0.42405063291139244, "f1_ci": {"90": [0.364188207958176, 0.48667350928641245], "95": [0.34920102269095554, 0.4985368691673284]}, "precision": 0.48905109489051096, "recall": 0.3743016759776536}, "event": {"f1": 0.4146341463414634, "f1_ci": {"90": [0.36212023989801767, 0.4683313491581428], "95": [0.3502082112930749, 0.4778481449922852]}, "precision": 0.44933920704845814, "recall": 0.3849056603773585}, "group": {"f1": 0.51252408477842, "f1_ci": {"90": [0.4573452121522882, 0.5658367176663969], "95": [0.44864981072900945, 0.5744367822180436]}, "precision": 0.6394230769230769, "recall": 0.42765273311897106}, "location": {"f1": 0.6349206349206349, "f1_ci": {"90": [0.5640853553605231, 0.6964856230031949], "95": [0.5436840439003798, 0.7125786608600979]}, "precision": 0.6666666666666666, "recall": 0.6060606060606061}, "person": {"f1": 0.798951048951049, "f1_ci": {"90": [0.7706629441193157, 0.8219729070364663], "95": [0.7663099298662476, 0.8272448572277301]}, "precision": 0.833941605839416, "recall": 0.7667785234899329}, "product": {"f1": 0.6683673469387755, "f1_ci": {"90": [0.6137868712702471, 0.7193481343491076], "95": [0.6005505949083819, 0.72868637441356]}, "precision": 0.7616279069767442, "recall": 0.5954545454545455}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6180153025736147, "micro/f1_ci": {"90": [0.6091071020409725, 0.6281541017445712], "95": [0.6068108439278024, 0.6300879315353104]}, "micro/recall": 0.6164431082331174, "micro/precision": 0.6195955369595537, "macro/f1": 0.5683670244315128, "macro/f1_ci": {"90": [0.5585356632073021, 0.5783570229745414], "95": [0.5566645989492551, 0.5802489470130128]}, "macro/recall": 0.5712308118378218, "macro/precision": 0.569694944056475, "per_entity_metric": {"corporation": {"f1": 0.47404505386875617, "f1_ci": {"90": [0.4490379133679127, 0.4990727568196289], "95": [0.4441134904075242, 0.5039688442060536]}, "precision": 0.4238178633975482, "recall": 0.5377777777777778}, "creative_work": {"f1": 0.3821742066171506, "f1_ci": {"90": [0.35211960334500386, 0.4128517316017316], "95": [0.34730538922155685, 0.41977224730637996]}, "precision": 0.37733333333333335, "recall": 0.387140902872777}, "event": {"f1": 0.44045368620037806, "f1_ci": {"90": [0.41686079777668794, 0.4635629737606736], "95": [0.41271162200014244, 0.4690119025876094]}, "precision": 0.4582104228121927, "recall": 0.4240218380345769}, "group": {"f1": 0.5773490532332975, "f1_ci": {"90": [0.5552643235358515, 0.6014339048948261], "95": [0.5519955277939024, 0.604945054945055]}, "precision": 0.6307572209211554, "recall": 0.5322793148880105}, "location": {"f1": 0.6442244224422442, "f1_ci": {"90": [0.616027444804906, 0.6713668122570161], "95": [0.6104101752199371, 0.6748156291439195]}, "precision": 0.6107634543178974, "recall": 0.6815642458100558}, "person": {"f1": 0.8072178236052291, "f1_ci": {"90": [0.7949127874965743, 0.8191705751547954], "95": [0.7917901949040049, 0.8214841028371646]}, "precision": 0.8061787421846267, "recall": 0.8082595870206489}, "product": {"f1": 0.6531049250535331, "f1_ci": {"90": [0.6304396220938515, 0.674394710721743], "95": [0.6260682322959881, 0.678272448791214]}, "precision": 0.6808035714285714, "recall": 0.6275720164609053}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7250418293363079, "micro/f1_ci": {}, "micro/recall": 0.6746237675142709, "micro/precision": 0.7836045810729355, "macro/f1": 0.7250418293363079, "macro/f1_ci": {}, "macro/recall": 0.6746237675142709, "macro/precision": 0.7836045810729355}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7652789052533921, "micro/f1_ci": {}, "micro/recall": 0.7631548513935469, "micro/precision": 0.7674148156762414, "macro/f1": 0.7652789052533921, "macro/f1_ci": {}, "macro/recall": 0.7631548513935469, "macro/precision": 0.7674148156762414}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "tner/bert-base-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|