model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bert-large-tweetner7-2020-2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6358014184397163
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6241506071070514
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.647895467160037
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5900128438830615
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5789290375636192
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6041427086183797
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7721468702116793
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7580788945843548
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7867468486180178
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6248982912937348
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6545454545454545
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5978204462895693
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5862888361879851
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.616927771523058
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5608699203922957
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7357569180683668
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.770892552586697
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7036844836533471
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bert-large-tweetner7-2020-2021-concat
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6358014184397163
|
94 |
+
- Precision (micro): 0.6241506071070514
|
95 |
+
- Recall (micro): 0.647895467160037
|
96 |
+
- F1 (macro): 0.5900128438830615
|
97 |
+
- Precision (macro): 0.5789290375636192
|
98 |
+
- Recall (macro): 0.6041427086183797
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5013333333333333
|
104 |
+
- creative_work: 0.4016441573693482
|
105 |
+
- event: 0.47004180213655367
|
106 |
+
- group: 0.5973851827019778
|
107 |
+
- location: 0.6720321931589538
|
108 |
+
- person: 0.8185623293903548
|
109 |
+
- product: 0.6690909090909091
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.626687324917235, 0.6449412548744916]
|
114 |
+
- 95%: [0.6246460521646338, 0.6465123623688929]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.626687324917235, 0.6449412548744916]
|
117 |
+
- 95%: [0.6246460521646338, 0.6465123623688929]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bert-large-tweetner7-2020-2021-concat")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_all
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: bert-large-cased
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6309464196294442, "micro/f1_ci": {}, "micro/recall": 0.63, "micro/precision": 0.6318956870611836, "macro/f1": 0.5854681564149163, "macro/f1_ci": {}, "macro/recall": 0.5839910318311838, "macro/precision": 0.5894227103402361, "per_entity_metric": {"corporation": {"f1": 0.5767441860465116, "f1_ci": {}, "precision": 0.5486725663716814, "recall": 0.6078431372549019}, "creative_work": {"f1": 0.44025157232704404, "f1_ci": {}, "precision": 0.4117647058823529, "recall": 0.47297297297297297}, "event": {"f1": 0.41666666666666663, "f1_ci": {}, "precision": 0.41353383458646614, "recall": 0.4198473282442748}, "group": {"f1": 0.634920634920635, "f1_ci": {}, "precision": 0.6542056074766355, "recall": 0.6167400881057269}, "location": {"f1": 0.582089552238806, "f1_ci": {}, "precision": 0.6290322580645161, "recall": 0.5416666666666666}, "person": {"f1": 0.809106830122592, "f1_ci": {}, "precision": 0.8020833333333334, "recall": 0.8162544169611308}, "product": {"f1": 0.6384976525821596, "f1_ci": {}, "precision": 0.6666666666666666, "recall": 0.6126126126126126}}}, "2021.test": {"micro/f1": 0.6358014184397163, "micro/f1_ci": {"90": [0.626687324917235, 0.6449412548744916], "95": [0.6246460521646338, 0.6465123623688929]}, "micro/recall": 0.647895467160037, "micro/precision": 0.6241506071070514, "macro/f1": 0.5900128438830615, "macro/f1_ci": {"90": [0.5803525272420662, 0.5998813669168028], "95": [0.5788003497848505, 0.601259279937617]}, "macro/recall": 0.6041427086183797, "macro/precision": 0.5789290375636192, "per_entity_metric": {"corporation": {"f1": 0.5013333333333333, "f1_ci": {"90": [0.4773041121935053, 0.5251458394589827], "95": [0.47212530903053357, 0.5299806250616865]}, "precision": 0.48205128205128206, "recall": 0.5222222222222223}, "creative_work": {"f1": 0.4016441573693482, "f1_ci": {"90": [0.3726155462184874, 0.4322116501076389], "95": [0.3661632723388598, 0.4400077984403119]}, "precision": 0.35185185185185186, "recall": 0.46785225718194257}, "event": {"f1": 0.47004180213655367, "f1_ci": {"90": [0.44757361821728175, 0.49203100743385103], "95": [0.4413532011324317, 0.49699281439717774]}, "precision": 0.48007590132827327, "recall": 0.4604185623293904}, "group": {"f1": 0.5973851827019778, "f1_ci": {"90": [0.5768783472459447, 0.6186116613189769], "95": [0.5739186663249559, 0.6234884659948738]}, "precision": 0.6081911262798635, "recall": 0.5869565217391305}, "location": {"f1": 0.6720321931589538, "f1_ci": {"90": [0.6440601569406398, 0.6977364758273161], "95": [0.6338632755879807, 0.7029718042123281]}, "precision": 0.6464516129032258, "recall": 0.6997206703910615}, "person": {"f1": 0.8185623293903548, "f1_ci": {"90": [0.8069829934867924, 0.8294376799389931], "95": [0.8044913837616584, 0.8315346050035313]}, "precision": 0.8081207330219188, "recall": 0.8292772861356932}, "product": {"f1": 0.6690909090909091, "f1_ci": {"90": [0.6468565841312396, 0.6917961840792326], "95": [0.6434676970626467, 0.6968318058220542]}, "precision": 0.6757607555089192, "recall": 0.6625514403292181}}}, "2020.test": {"micro/f1": 0.6248982912937348, "micro/f1_ci": {"90": [0.6036183066759389, 0.6448988322002785], "95": [0.5997215835288842, 0.6486262984430212]}, "micro/recall": 0.5978204462895693, "micro/precision": 0.6545454545454545, "macro/f1": 0.5862888361879851, "macro/f1_ci": {"90": [0.5625855374311386, 0.6074574296186365], "95": [0.5597026514157946, 0.6122702483863757]}, "macro/recall": 0.5608699203922957, "macro/precision": 0.616927771523058, "per_entity_metric": {"corporation": {"f1": 0.5555555555555557, "f1_ci": {"90": [0.4929666282756757, 0.6157425077749504], "95": [0.4815702026201889, 0.6239593828404353]}, "precision": 0.5614973262032086, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.47645429362880887, "f1_ci": {"90": [0.41873557692307695, 0.531952314765316], "95": [0.4105496653883751, 0.5422103927516406]}, "precision": 0.4725274725274725, "recall": 0.48044692737430167}, "event": {"f1": 0.4307692307692308, "f1_ci": {"90": [0.3765041888804265, 0.48304065137052626], "95": [0.3662964004499437, 0.4933740655220503]}, "precision": 0.4392156862745098, "recall": 0.4226415094339623}, "group": {"f1": 0.5488029465930019, "f1_ci": {"90": [0.49312550362610796, 0.6021388689955173], "95": [0.4815344237631145, 0.6138935323507213]}, "precision": 0.6422413793103449, "recall": 0.4790996784565916}, "location": {"f1": 0.6389776357827476, "f1_ci": {"90": [0.5704350369233019, 0.6954414208174869], "95": [0.5592458090141159, 0.7055226928772518]}, "precision": 0.6756756756756757, "recall": 0.6060606060606061}, "person": {"f1": 0.8030954428202924, "f1_ci": {"90": [0.7764797488787779, 0.8275862068965517], "95": [0.7715901091859506, 0.8317556848228449]}, "precision": 0.8236331569664903, "recall": 0.7835570469798657}, "product": {"f1": 0.6503667481662592, "f1_ci": {"90": [0.5995089521794967, 0.6982585104933628], "95": [0.5893208083725082, 0.7077953136504405]}, "precision": 0.7037037037037037, "recall": 0.6045454545454545}}}, "2021.test (span detection)": {"micro/f1": 0.7721468702116793, "micro/f1_ci": {}, "micro/recall": 0.7867468486180178, "micro/precision": 0.7580788945843548, "macro/f1": 0.7721468702116793, "macro/f1_ci": {}, "macro/recall": 0.7867468486180178, "macro/precision": 0.7580788945843548}, "2020.test (span detection)": {"micro/f1": 0.7357569180683668, "micro/f1_ci": {}, "micro/recall": 0.7036844836533471, "micro/precision": 0.770892552586697, "macro/f1": 0.7357569180683668, "macro/f1_ci": {}, "macro/recall": 0.7036844836533471, "macro/precision": 0.770892552586697}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6248982912937348, "micro/f1_ci": {"90": [0.6036183066759389, 0.6448988322002785], "95": [0.5997215835288842, 0.6486262984430212]}, "micro/recall": 0.5978204462895693, "micro/precision": 0.6545454545454545, "macro/f1": 0.5862888361879851, "macro/f1_ci": {"90": [0.5625855374311386, 0.6074574296186365], "95": [0.5597026514157946, 0.6122702483863757]}, "macro/recall": 0.5608699203922957, "macro/precision": 0.616927771523058, "per_entity_metric": {"corporation": {"f1": 0.5555555555555557, "f1_ci": {"90": [0.4929666282756757, 0.6157425077749504], "95": [0.4815702026201889, 0.6239593828404353]}, "precision": 0.5614973262032086, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.47645429362880887, "f1_ci": {"90": [0.41873557692307695, 0.531952314765316], "95": [0.4105496653883751, 0.5422103927516406]}, "precision": 0.4725274725274725, "recall": 0.48044692737430167}, "event": {"f1": 0.4307692307692308, "f1_ci": {"90": [0.3765041888804265, 0.48304065137052626], "95": [0.3662964004499437, 0.4933740655220503]}, "precision": 0.4392156862745098, "recall": 0.4226415094339623}, "group": {"f1": 0.5488029465930019, "f1_ci": {"90": [0.49312550362610796, 0.6021388689955173], "95": [0.4815344237631145, 0.6138935323507213]}, "precision": 0.6422413793103449, "recall": 0.4790996784565916}, "location": {"f1": 0.6389776357827476, "f1_ci": {"90": [0.5704350369233019, 0.6954414208174869], "95": [0.5592458090141159, 0.7055226928772518]}, "precision": 0.6756756756756757, "recall": 0.6060606060606061}, "person": {"f1": 0.8030954428202924, "f1_ci": {"90": [0.7764797488787779, 0.8275862068965517], "95": [0.7715901091859506, 0.8317556848228449]}, "precision": 0.8236331569664903, "recall": 0.7835570469798657}, "product": {"f1": 0.6503667481662592, "f1_ci": {"90": [0.5995089521794967, 0.6982585104933628], "95": [0.5893208083725082, 0.7077953136504405]}, "precision": 0.7037037037037037, "recall": 0.6045454545454545}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6358014184397163, "micro/f1_ci": {"90": [0.626687324917235, 0.6449412548744916], "95": [0.6246460521646338, 0.6465123623688929]}, "micro/recall": 0.647895467160037, "micro/precision": 0.6241506071070514, "macro/f1": 0.5900128438830615, "macro/f1_ci": {"90": [0.5803525272420662, 0.5998813669168028], "95": [0.5788003497848505, 0.601259279937617]}, "macro/recall": 0.6041427086183797, "macro/precision": 0.5789290375636192, "per_entity_metric": {"corporation": {"f1": 0.5013333333333333, "f1_ci": {"90": [0.4773041121935053, 0.5251458394589827], "95": [0.47212530903053357, 0.5299806250616865]}, "precision": 0.48205128205128206, "recall": 0.5222222222222223}, "creative_work": {"f1": 0.4016441573693482, "f1_ci": {"90": [0.3726155462184874, 0.4322116501076389], "95": [0.3661632723388598, 0.4400077984403119]}, "precision": 0.35185185185185186, "recall": 0.46785225718194257}, "event": {"f1": 0.47004180213655367, "f1_ci": {"90": [0.44757361821728175, 0.49203100743385103], "95": [0.4413532011324317, 0.49699281439717774]}, "precision": 0.48007590132827327, "recall": 0.4604185623293904}, "group": {"f1": 0.5973851827019778, "f1_ci": {"90": [0.5768783472459447, 0.6186116613189769], "95": [0.5739186663249559, 0.6234884659948738]}, "precision": 0.6081911262798635, "recall": 0.5869565217391305}, "location": {"f1": 0.6720321931589538, "f1_ci": {"90": [0.6440601569406398, 0.6977364758273161], "95": [0.6338632755879807, 0.7029718042123281]}, "precision": 0.6464516129032258, "recall": 0.6997206703910615}, "person": {"f1": 0.8185623293903548, "f1_ci": {"90": [0.8069829934867924, 0.8294376799389931], "95": [0.8044913837616584, 0.8315346050035313]}, "precision": 0.8081207330219188, "recall": 0.8292772861356932}, "product": {"f1": 0.6690909090909091, "f1_ci": {"90": [0.6468565841312396, 0.6917961840792326], "95": [0.6434676970626467, 0.6968318058220542]}, "precision": 0.6757607555089192, "recall": 0.6625514403292181}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7357569180683668, "micro/f1_ci": {}, "micro/recall": 0.7036844836533471, "micro/precision": 0.770892552586697, "macro/f1": 0.7357569180683668, "macro/f1_ci": {}, "macro/recall": 0.7036844836533471, "macro/precision": 0.770892552586697}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7721468702116793, "micro/f1_ci": {}, "micro/recall": 0.7867468486180178, "micro/precision": 0.7580788945843548, "macro/f1": 0.7721468702116793, "macro/f1_ci": {}, "macro/recall": 0.7867468486180178, "macro/precision": 0.7580788945843548}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "bert-large-cased", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|