asahi417 commited on
Commit
b9ebd44
1 Parent(s): 4894c9c

model update

Browse files
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - tner/tweetner7
4
+ metrics:
5
+ - f1
6
+ - precision
7
+ - recall
8
+ model-index:
9
+ - name: tner/bert-large-tweetner7-2020-2021-concat
10
+ results:
11
+ - task:
12
+ name: Token Classification
13
+ type: token-classification
14
+ dataset:
15
+ name: tner/tweetner7/test_2021
16
+ type: tner/tweetner7/test_2021
17
+ args: tner/tweetner7/test_2021
18
+ metrics:
19
+ - name: F1
20
+ type: f1
21
+ value: 0.6358014184397163
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.6241506071070514
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.647895467160037
28
+ - name: F1 (macro)
29
+ type: f1_macro
30
+ value: 0.5900128438830615
31
+ - name: Precision (macro)
32
+ type: precision_macro
33
+ value: 0.5789290375636192
34
+ - name: Recall (macro)
35
+ type: recall_macro
36
+ value: 0.6041427086183797
37
+ - name: F1 (entity span)
38
+ type: f1_entity_span
39
+ value: 0.7721468702116793
40
+ - name: Precision (entity span)
41
+ type: precision_entity_span
42
+ value: 0.7580788945843548
43
+ - name: Recall (entity span)
44
+ type: recall_entity_span
45
+ value: 0.7867468486180178
46
+ - task:
47
+ name: Token Classification
48
+ type: token-classification
49
+ dataset:
50
+ name: tner/tweetner7/test_2020
51
+ type: tner/tweetner7/test_2020
52
+ args: tner/tweetner7/test_2020
53
+ metrics:
54
+ - name: F1
55
+ type: f1
56
+ value: 0.6248982912937348
57
+ - name: Precision
58
+ type: precision
59
+ value: 0.6545454545454545
60
+ - name: Recall
61
+ type: recall
62
+ value: 0.5978204462895693
63
+ - name: F1 (macro)
64
+ type: f1_macro
65
+ value: 0.5862888361879851
66
+ - name: Precision (macro)
67
+ type: precision_macro
68
+ value: 0.616927771523058
69
+ - name: Recall (macro)
70
+ type: recall_macro
71
+ value: 0.5608699203922957
72
+ - name: F1 (entity span)
73
+ type: f1_entity_span
74
+ value: 0.7357569180683668
75
+ - name: Precision (entity span)
76
+ type: precision_entity_span
77
+ value: 0.770892552586697
78
+ - name: Recall (entity span)
79
+ type: recall_entity_span
80
+ value: 0.7036844836533471
81
+
82
+ pipeline_tag: token-classification
83
+ widget:
84
+ - text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
85
+ example_title: "NER Example 1"
86
+ ---
87
+ # tner/bert-large-tweetner7-2020-2021-concat
88
+
89
+ This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the
90
+ [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
91
+ Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
92
+ for more detail). It achieves the following results on the test set of 2021:
93
+ - F1 (micro): 0.6358014184397163
94
+ - Precision (micro): 0.6241506071070514
95
+ - Recall (micro): 0.647895467160037
96
+ - F1 (macro): 0.5900128438830615
97
+ - Precision (macro): 0.5789290375636192
98
+ - Recall (macro): 0.6041427086183797
99
+
100
+
101
+
102
+ The per-entity breakdown of the F1 score on the test set are below:
103
+ - corporation: 0.5013333333333333
104
+ - creative_work: 0.4016441573693482
105
+ - event: 0.47004180213655367
106
+ - group: 0.5973851827019778
107
+ - location: 0.6720321931589538
108
+ - person: 0.8185623293903548
109
+ - product: 0.6690909090909091
110
+
111
+ For F1 scores, the confidence interval is obtained by bootstrap as below:
112
+ - F1 (micro):
113
+ - 90%: [0.626687324917235, 0.6449412548744916]
114
+ - 95%: [0.6246460521646338, 0.6465123623688929]
115
+ - F1 (macro):
116
+ - 90%: [0.626687324917235, 0.6449412548744916]
117
+ - 95%: [0.6246460521646338, 0.6465123623688929]
118
+
119
+ Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
120
+ and [metric file of entity span](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
121
+
122
+ ### Usage
123
+ This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
124
+ ```shell
125
+ pip install tner
126
+ ```
127
+ and activate model as below.
128
+ ```python
129
+ from tner import TransformersNER
130
+ model = TransformersNER("tner/bert-large-tweetner7-2020-2021-concat")
131
+ model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
132
+ ```
133
+ It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
134
+
135
+ ### Training hyperparameters
136
+
137
+ The following hyperparameters were used during training:
138
+ - dataset: ['tner/tweetner7']
139
+ - dataset_split: train_all
140
+ - dataset_name: None
141
+ - local_dataset: None
142
+ - model: bert-large-cased
143
+ - crf: True
144
+ - max_length: 128
145
+ - epoch: 30
146
+ - batch_size: 32
147
+ - lr: 1e-05
148
+ - random_seed: 0
149
+ - gradient_accumulation_steps: 1
150
+ - weight_decay: 1e-07
151
+ - lr_warmup_step_ratio: 0.15
152
+ - max_grad_norm: 1
153
+
154
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
155
+
156
+ ### Reference
157
+ If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
158
+
159
+ ```
160
+
161
+ @inproceedings{ushio-camacho-collados-2021-ner,
162
+ title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
163
+ author = "Ushio, Asahi and
164
+ Camacho-Collados, Jose",
165
+ booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
166
+ month = apr,
167
+ year = "2021",
168
+ address = "Online",
169
+ publisher = "Association for Computational Linguistics",
170
+ url = "https://aclanthology.org/2021.eacl-demos.7",
171
+ doi = "10.18653/v1/2021.eacl-demos.7",
172
+ pages = "53--62",
173
+ abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
174
+ }
175
+
176
+ ```
eval/metric.json DELETED
@@ -1 +0,0 @@
1
- {"2021.dev": {"micro/f1": 0.6309464196294442, "micro/f1_ci": {}, "micro/recall": 0.63, "micro/precision": 0.6318956870611836, "macro/f1": 0.5854681564149163, "macro/f1_ci": {}, "macro/recall": 0.5839910318311838, "macro/precision": 0.5894227103402361, "per_entity_metric": {"corporation": {"f1": 0.5767441860465116, "f1_ci": {}, "precision": 0.5486725663716814, "recall": 0.6078431372549019}, "creative_work": {"f1": 0.44025157232704404, "f1_ci": {}, "precision": 0.4117647058823529, "recall": 0.47297297297297297}, "event": {"f1": 0.41666666666666663, "f1_ci": {}, "precision": 0.41353383458646614, "recall": 0.4198473282442748}, "group": {"f1": 0.634920634920635, "f1_ci": {}, "precision": 0.6542056074766355, "recall": 0.6167400881057269}, "location": {"f1": 0.582089552238806, "f1_ci": {}, "precision": 0.6290322580645161, "recall": 0.5416666666666666}, "person": {"f1": 0.809106830122592, "f1_ci": {}, "precision": 0.8020833333333334, "recall": 0.8162544169611308}, "product": {"f1": 0.6384976525821596, "f1_ci": {}, "precision": 0.6666666666666666, "recall": 0.6126126126126126}}}, "2021.test": {"micro/f1": 0.6358014184397163, "micro/f1_ci": {"90": [0.626687324917235, 0.6449412548744916], "95": [0.6246460521646338, 0.6465123623688929]}, "micro/recall": 0.647895467160037, "micro/precision": 0.6241506071070514, "macro/f1": 0.5900128438830615, "macro/f1_ci": {"90": [0.5803525272420662, 0.5998813669168028], "95": [0.5788003497848505, 0.601259279937617]}, "macro/recall": 0.6041427086183797, "macro/precision": 0.5789290375636192, "per_entity_metric": {"corporation": {"f1": 0.5013333333333333, "f1_ci": {"90": [0.4773041121935053, 0.5251458394589827], "95": [0.47212530903053357, 0.5299806250616865]}, "precision": 0.48205128205128206, "recall": 0.5222222222222223}, "creative_work": {"f1": 0.4016441573693482, "f1_ci": {"90": [0.3726155462184874, 0.4322116501076389], "95": [0.3661632723388598, 0.4400077984403119]}, "precision": 0.35185185185185186, "recall": 0.46785225718194257}, "event": {"f1": 0.47004180213655367, "f1_ci": {"90": [0.44757361821728175, 0.49203100743385103], "95": [0.4413532011324317, 0.49699281439717774]}, "precision": 0.48007590132827327, "recall": 0.4604185623293904}, "group": {"f1": 0.5973851827019778, "f1_ci": {"90": [0.5768783472459447, 0.6186116613189769], "95": [0.5739186663249559, 0.6234884659948738]}, "precision": 0.6081911262798635, "recall": 0.5869565217391305}, "location": {"f1": 0.6720321931589538, "f1_ci": {"90": [0.6440601569406398, 0.6977364758273161], "95": [0.6338632755879807, 0.7029718042123281]}, "precision": 0.6464516129032258, "recall": 0.6997206703910615}, "person": {"f1": 0.8185623293903548, "f1_ci": {"90": [0.8069829934867924, 0.8294376799389931], "95": [0.8044913837616584, 0.8315346050035313]}, "precision": 0.8081207330219188, "recall": 0.8292772861356932}, "product": {"f1": 0.6690909090909091, "f1_ci": {"90": [0.6468565841312396, 0.6917961840792326], "95": [0.6434676970626467, 0.6968318058220542]}, "precision": 0.6757607555089192, "recall": 0.6625514403292181}}}, "2020.test": {"micro/f1": 0.6248982912937348, "micro/f1_ci": {"90": [0.6036183066759389, 0.6448988322002785], "95": [0.5997215835288842, 0.6486262984430212]}, "micro/recall": 0.5978204462895693, "micro/precision": 0.6545454545454545, "macro/f1": 0.5862888361879851, "macro/f1_ci": {"90": [0.5625855374311386, 0.6074574296186365], "95": [0.5597026514157946, 0.6122702483863757]}, "macro/recall": 0.5608699203922957, "macro/precision": 0.616927771523058, "per_entity_metric": {"corporation": {"f1": 0.5555555555555557, "f1_ci": {"90": [0.4929666282756757, 0.6157425077749504], "95": [0.4815702026201889, 0.6239593828404353]}, "precision": 0.5614973262032086, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.47645429362880887, "f1_ci": {"90": [0.41873557692307695, 0.531952314765316], "95": [0.4105496653883751, 0.5422103927516406]}, "precision": 0.4725274725274725, "recall": 0.48044692737430167}, "event": {"f1": 0.4307692307692308, "f1_ci": {"90": [0.3765041888804265, 0.48304065137052626], "95": [0.3662964004499437, 0.4933740655220503]}, "precision": 0.4392156862745098, "recall": 0.4226415094339623}, "group": {"f1": 0.5488029465930019, "f1_ci": {"90": [0.49312550362610796, 0.6021388689955173], "95": [0.4815344237631145, 0.6138935323507213]}, "precision": 0.6422413793103449, "recall": 0.4790996784565916}, "location": {"f1": 0.6389776357827476, "f1_ci": {"90": [0.5704350369233019, 0.6954414208174869], "95": [0.5592458090141159, 0.7055226928772518]}, "precision": 0.6756756756756757, "recall": 0.6060606060606061}, "person": {"f1": 0.8030954428202924, "f1_ci": {"90": [0.7764797488787779, 0.8275862068965517], "95": [0.7715901091859506, 0.8317556848228449]}, "precision": 0.8236331569664903, "recall": 0.7835570469798657}, "product": {"f1": 0.6503667481662592, "f1_ci": {"90": [0.5995089521794967, 0.6982585104933628], "95": [0.5893208083725082, 0.7077953136504405]}, "precision": 0.7037037037037037, "recall": 0.6045454545454545}}}, "2021.test (span detection)": {"micro/f1": 0.7721468702116793, "micro/f1_ci": {}, "micro/recall": 0.7867468486180178, "micro/precision": 0.7580788945843548, "macro/f1": 0.7721468702116793, "macro/f1_ci": {}, "macro/recall": 0.7867468486180178, "macro/precision": 0.7580788945843548}, "2020.test (span detection)": {"micro/f1": 0.7357569180683668, "micro/f1_ci": {}, "micro/recall": 0.7036844836533471, "micro/precision": 0.770892552586697, "macro/f1": 0.7357569180683668, "macro/f1_ci": {}, "macro/recall": 0.7036844836533471, "macro/precision": 0.770892552586697}}
 
 
eval/metric.test_2020.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.6248982912937348, "micro/f1_ci": {"90": [0.6036183066759389, 0.6448988322002785], "95": [0.5997215835288842, 0.6486262984430212]}, "micro/recall": 0.5978204462895693, "micro/precision": 0.6545454545454545, "macro/f1": 0.5862888361879851, "macro/f1_ci": {"90": [0.5625855374311386, 0.6074574296186365], "95": [0.5597026514157946, 0.6122702483863757]}, "macro/recall": 0.5608699203922957, "macro/precision": 0.616927771523058, "per_entity_metric": {"corporation": {"f1": 0.5555555555555557, "f1_ci": {"90": [0.4929666282756757, 0.6157425077749504], "95": [0.4815702026201889, 0.6239593828404353]}, "precision": 0.5614973262032086, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.47645429362880887, "f1_ci": {"90": [0.41873557692307695, 0.531952314765316], "95": [0.4105496653883751, 0.5422103927516406]}, "precision": 0.4725274725274725, "recall": 0.48044692737430167}, "event": {"f1": 0.4307692307692308, "f1_ci": {"90": [0.3765041888804265, 0.48304065137052626], "95": [0.3662964004499437, 0.4933740655220503]}, "precision": 0.4392156862745098, "recall": 0.4226415094339623}, "group": {"f1": 0.5488029465930019, "f1_ci": {"90": [0.49312550362610796, 0.6021388689955173], "95": [0.4815344237631145, 0.6138935323507213]}, "precision": 0.6422413793103449, "recall": 0.4790996784565916}, "location": {"f1": 0.6389776357827476, "f1_ci": {"90": [0.5704350369233019, 0.6954414208174869], "95": [0.5592458090141159, 0.7055226928772518]}, "precision": 0.6756756756756757, "recall": 0.6060606060606061}, "person": {"f1": 0.8030954428202924, "f1_ci": {"90": [0.7764797488787779, 0.8275862068965517], "95": [0.7715901091859506, 0.8317556848228449]}, "precision": 0.8236331569664903, "recall": 0.7835570469798657}, "product": {"f1": 0.6503667481662592, "f1_ci": {"90": [0.5995089521794967, 0.6982585104933628], "95": [0.5893208083725082, 0.7077953136504405]}, "precision": 0.7037037037037037, "recall": 0.6045454545454545}}}
eval/metric.test_2021.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.6358014184397163, "micro/f1_ci": {"90": [0.626687324917235, 0.6449412548744916], "95": [0.6246460521646338, 0.6465123623688929]}, "micro/recall": 0.647895467160037, "micro/precision": 0.6241506071070514, "macro/f1": 0.5900128438830615, "macro/f1_ci": {"90": [0.5803525272420662, 0.5998813669168028], "95": [0.5788003497848505, 0.601259279937617]}, "macro/recall": 0.6041427086183797, "macro/precision": 0.5789290375636192, "per_entity_metric": {"corporation": {"f1": 0.5013333333333333, "f1_ci": {"90": [0.4773041121935053, 0.5251458394589827], "95": [0.47212530903053357, 0.5299806250616865]}, "precision": 0.48205128205128206, "recall": 0.5222222222222223}, "creative_work": {"f1": 0.4016441573693482, "f1_ci": {"90": [0.3726155462184874, 0.4322116501076389], "95": [0.3661632723388598, 0.4400077984403119]}, "precision": 0.35185185185185186, "recall": 0.46785225718194257}, "event": {"f1": 0.47004180213655367, "f1_ci": {"90": [0.44757361821728175, 0.49203100743385103], "95": [0.4413532011324317, 0.49699281439717774]}, "precision": 0.48007590132827327, "recall": 0.4604185623293904}, "group": {"f1": 0.5973851827019778, "f1_ci": {"90": [0.5768783472459447, 0.6186116613189769], "95": [0.5739186663249559, 0.6234884659948738]}, "precision": 0.6081911262798635, "recall": 0.5869565217391305}, "location": {"f1": 0.6720321931589538, "f1_ci": {"90": [0.6440601569406398, 0.6977364758273161], "95": [0.6338632755879807, 0.7029718042123281]}, "precision": 0.6464516129032258, "recall": 0.6997206703910615}, "person": {"f1": 0.8185623293903548, "f1_ci": {"90": [0.8069829934867924, 0.8294376799389931], "95": [0.8044913837616584, 0.8315346050035313]}, "precision": 0.8081207330219188, "recall": 0.8292772861356932}, "product": {"f1": 0.6690909090909091, "f1_ci": {"90": [0.6468565841312396, 0.6917961840792326], "95": [0.6434676970626467, 0.6968318058220542]}, "precision": 0.6757607555089192, "recall": 0.6625514403292181}}}
eval/metric_span.test_2020.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.7357569180683668, "micro/f1_ci": {}, "micro/recall": 0.7036844836533471, "micro/precision": 0.770892552586697, "macro/f1": 0.7357569180683668, "macro/f1_ci": {}, "macro/recall": 0.7036844836533471, "macro/precision": 0.770892552586697}
eval/metric_span.test_2021.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.7721468702116793, "micro/f1_ci": {}, "micro/recall": 0.7867468486180178, "micro/precision": 0.7580788945843548, "macro/f1": 0.7721468702116793, "macro/f1_ci": {}, "macro/recall": 0.7867468486180178, "macro/precision": 0.7580788945843548}
eval/prediction.2020.test.json DELETED
The diff for this file is too large to render. See raw diff
 
eval/prediction.2021.dev.json DELETED
The diff for this file is too large to render. See raw diff
 
eval/prediction.2021.test.json DELETED
The diff for this file is too large to render. See raw diff
 
trainer_config.json CHANGED
@@ -1 +1 @@
1
- {"data_split": "2020_2021.train", "model": "bert-large-cased", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
 
1
+ {"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "bert-large-cased", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}