--- datasets: - tner/tweetner7 metrics: - f1 - precision - recall model-index: - name: tner/bert-large-tweetner7-2020-2021-continuous results: - task: name: Token Classification type: token-classification dataset: name: tner/tweetner7/test_2021 type: tner/tweetner7/test_2021 args: tner/tweetner7/test_2021 metrics: - name: F1 type: f1 value: 0.6319818203564167 - name: Precision type: precision value: 0.6544463710676245 - name: Recall type: recall value: 0.6110083256244219 - name: F1 (macro) type: f1_macro value: 0.5766988664971804 - name: Precision (macro) type: precision_macro value: 0.601237684920777 - name: Recall (macro) type: recall_macro value: 0.5559244768648601 - name: F1 (entity span) type: f1_entity_span value: 0.7603780356501973 - name: Precision (entity span) type: precision_entity_span value: 0.7875108412836079 - name: Recall (entity span) type: recall_entity_span value: 0.7350526194055742 - task: name: Token Classification type: token-classification dataset: name: tner/tweetner7/test_2020 type: tner/tweetner7/test_2020 args: tner/tweetner7/test_2020 metrics: - name: F1 type: f1 value: 0.6247533126585846 - name: Precision type: precision value: 0.6839506172839506 - name: Recall type: recall value: 0.5749870264660093 - name: F1 (macro) type: f1_macro value: 0.578717595313749 - name: Precision (macro) type: precision_macro value: 0.6410778727928796 - name: Recall (macro) type: recall_macro value: 0.5301549277792547 - name: F1 (entity span) type: f1_entity_span value: 0.7245559627854524 - name: Precision (entity span) type: precision_entity_span value: 0.7932098765432098 - name: Recall (entity span) type: recall_entity_span value: 0.6668396471198754 pipeline_tag: token-classification widget: - text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}" example_title: "NER Example 1" --- # tner/bert-large-tweetner7-2020-2021-continuous This model is a fine-tuned version of [tner/bert-large-tweetner-2020](https://huggingface.co/tner/bert-large-tweetner-2020) on the [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set of 2021: - F1 (micro): 0.6319818203564167 - Precision (micro): 0.6544463710676245 - Recall (micro): 0.6110083256244219 - F1 (macro): 0.5766988664971804 - Precision (macro): 0.601237684920777 - Recall (macro): 0.5559244768648601 The per-entity breakdown of the F1 score on the test set are below: - corporation: 0.514024041213509 - creative_work: 0.39736070381231675 - event: 0.42546740778170794 - group: 0.5859649122807017 - location: 0.6335664335664336 - person: 0.8127490039840638 - product: 0.6677595628415302 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.6231013705127983, 0.6413574593408826] - 95%: [0.6217502353949177, 0.6428942705896876] - F1 (macro): - 90%: [0.6231013705127983, 0.6413574593408826] - 95%: [0.6217502353949177, 0.6428942705896876] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-continuous/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/bert-large-tweetner7-2020-2021-continuous") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/tweetner7'] - dataset_split: train_2021 - dataset_name: None - local_dataset: None - model: tner/bert-large-tweetner-2020 - crf: True - max_length: 128 - epoch: 30 - batch_size: 32 - lr: 1e-06 - random_seed: 0 - gradient_accumulation_steps: 1 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.3 - max_grad_norm: 1 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-continuous/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```