model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bertweet-large-tweetner7-2020-2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6646206308610401
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.653515144741254
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6761100832562442
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6187282305429461
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6069581336386037
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6359356515638321
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7953163189905075
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7820254862508383
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8090667283450907
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6675704989154012
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6990346394094265
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6388168137000519
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6307734401161805
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6616549497337102
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.6085863177550797
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7759088442756376
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8129619101762365
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.742086144265698
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bertweet-large-tweetner7-2020-2021-concat
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6646206308610401
|
94 |
+
- Precision (micro): 0.653515144741254
|
95 |
+
- Recall (micro): 0.6761100832562442
|
96 |
+
- F1 (macro): 0.6187282305429461
|
97 |
+
- Precision (macro): 0.6069581336386037
|
98 |
+
- Recall (macro): 0.6359356515638321
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.545042492917847
|
104 |
+
- creative_work: 0.47362250879249707
|
105 |
+
- event: 0.4915336236090953
|
106 |
+
- group: 0.623768877216021
|
107 |
+
- location: 0.6754716981132076
|
108 |
+
- person: 0.8414922656960875
|
109 |
+
- product: 0.6801661474558671
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6554125820888649, 0.6736489128168938]
|
114 |
+
- 95%: [0.6533077908395879, 0.675252368755536]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6554125820888649, 0.6736489128168938]
|
117 |
+
- 95%: [0.6533077908395879, 0.675252368755536]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-large-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bertweet-large-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bertweet-large-tweetner7-2020-2021-concat")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_all
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: vinai/bertweet-large
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-large-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6507224713502741, "micro/f1_ci": {}, "micro/recall": 0.653, "micro/precision": 0.6484607745779544, "macro/f1": 0.6103997713771362, "macro/f1_ci": {}, "macro/recall": 0.6181336282143709, "macro/precision": 0.606567588228242, "per_entity_metric": {"corporation": {"f1": 0.5841584158415842, "f1_ci": {}, "precision": 0.59, "recall": 0.5784313725490197}, "creative_work": {"f1": 0.4733727810650888, "f1_ci": {}, "precision": 0.42105263157894735, "recall": 0.5405405405405406}, "event": {"f1": 0.4897959183673469, "f1_ci": {}, "precision": 0.5263157894736842, "recall": 0.4580152671755725}, "group": {"f1": 0.6057906458797327, "f1_ci": {}, "precision": 0.6126126126126126, "recall": 0.5991189427312775}, "location": {"f1": 0.6233766233766234, "f1_ci": {}, "precision": 0.5853658536585366, "recall": 0.6666666666666666}, "person": {"f1": 0.8327526132404182, "f1_ci": {}, "precision": 0.8213058419243986, "recall": 0.8445229681978799}, "product": {"f1": 0.663551401869159, "f1_ci": {}, "precision": 0.6893203883495146, "recall": 0.6396396396396397}}}, "2021.test": {"micro/f1": 0.6646206308610401, "micro/f1_ci": {"90": [0.6554125820888649, 0.6736489128168938], "95": [0.6533077908395879, 0.675252368755536]}, "micro/recall": 0.6761100832562442, "micro/precision": 0.653515144741254, "macro/f1": 0.6187282305429461, "macro/f1_ci": {"90": [0.6086007046046046, 0.6274752439680484], "95": [0.6064349641468447, 0.6292100251466678]}, "macro/recall": 0.6359356515638321, "macro/precision": 0.6069581336386037, "per_entity_metric": {"corporation": {"f1": 0.545042492917847, "f1_ci": {"90": [0.5210565034619189, 0.570455308114704], "95": [0.5163483236977213, 0.5768635272388254]}, "precision": 0.5560693641618497, "recall": 0.5344444444444445}, "creative_work": {"f1": 0.47362250879249707, "f1_ci": {"90": [0.44319138030931055, 0.5049788934117292], "95": [0.4364029194303145, 0.5107778906673237]}, "precision": 0.41435897435897434, "recall": 0.5526675786593708}, "event": {"f1": 0.4915336236090953, "f1_ci": {"90": [0.4684507714181196, 0.5143994098920723], "95": [0.46447741808246684, 0.5187658305407751]}, "precision": 0.5247933884297521, "recall": 0.462238398544131}, "group": {"f1": 0.623768877216021, "f1_ci": {"90": [0.6036063111513918, 0.6459784481752944], "95": [0.5996059953988204, 0.6488495817907584]}, "precision": 0.6217277486910995, "recall": 0.6258234519104084}, "location": {"f1": 0.6754716981132076, "f1_ci": {"90": [0.6502264241541174, 0.7009141138003405], "95": [0.643485938839921, 0.7058891849422697]}, "precision": 0.61441647597254, "recall": 0.75}, "person": {"f1": 0.8414922656960875, "f1_ci": {"90": [0.8306318756851475, 0.8517340317116006], "95": [0.8291240468904854, 0.8531652713056682]}, "precision": 0.8307581746316924, "recall": 0.8525073746312685}, "product": {"f1": 0.6801661474558671, "f1_ci": {"90": [0.6576924955753543, 0.7017577078587071], "95": [0.6537204296451585, 0.7052648077874939]}, "precision": 0.6865828092243187, "recall": 0.6738683127572016}}}, "2020.test": {"micro/f1": 0.6675704989154012, "micro/f1_ci": {"90": [0.6478782487489827, 0.686330134406657], "95": [0.643485580441, 0.689784971727218]}, "micro/recall": 0.6388168137000519, "micro/precision": 0.6990346394094265, "macro/f1": 0.6307734401161805, "macro/f1_ci": {"90": [0.6086331719773058, 0.650352710597749], "95": [0.6044641232125019, 0.6551010145551667]}, "macro/recall": 0.6085863177550797, "macro/precision": 0.6616549497337102, "per_entity_metric": {"corporation": {"f1": 0.5888594164456233, "f1_ci": {"90": [0.5313343849856409, 0.6377922295678834], "95": [0.5233514118457299, 0.6485181964142359]}, "precision": 0.5967741935483871, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5524296675191815, "f1_ci": {"90": [0.49640524689644966, 0.6021000260333806], "95": [0.48969679633867275, 0.610844280240832]}, "precision": 0.5094339622641509, "recall": 0.6033519553072626}, "event": {"f1": 0.4888888888888889, "f1_ci": {"90": [0.43619555287353434, 0.5418402724977951], "95": [0.42727297146820076, 0.5512992831541219]}, "precision": 0.5260869565217391, "recall": 0.45660377358490567}, "group": {"f1": 0.5985130111524165, "f1_ci": {"90": [0.5485224195478304, 0.650063025210084], "95": [0.534749739311783, 0.6577725388960302]}, "precision": 0.7092511013215859, "recall": 0.5176848874598071}, "location": {"f1": 0.6666666666666666, "f1_ci": {"90": [0.598896163716523, 0.7267257383966245], "95": [0.5836553829874008, 0.744198416625433]}, "precision": 0.6607142857142857, "recall": 0.6727272727272727}, "person": {"f1": 0.8349178910976663, "f1_ci": {"90": [0.8089173822232536, 0.8576861436442418], "95": [0.8028489054150965, 0.8630879876393839]}, "precision": 0.8609625668449198, "recall": 0.8104026845637584}, "product": {"f1": 0.6851385390428212, "f1_ci": {"90": [0.6308652472005644, 0.7338255988615702], "95": [0.6200345849802371, 0.7411211707957673]}, "precision": 0.768361581920904, "recall": 0.6181818181818182}}}, "2021.test (span detection)": {"micro/f1": 0.7953163189905075, "micro/f1_ci": {}, "micro/recall": 0.8090667283450907, "micro/precision": 0.7820254862508383, "macro/f1": 0.7953163189905075, "macro/f1_ci": {}, "macro/recall": 0.8090667283450907, "macro/precision": 0.7820254862508383}, "2020.test (span detection)": {"micro/f1": 0.7759088442756376, "micro/f1_ci": {}, "micro/recall": 0.742086144265698, "micro/precision": 0.8129619101762365, "macro/f1": 0.7759088442756376, "macro/f1_ci": {}, "macro/recall": 0.742086144265698, "macro/precision": 0.8129619101762365}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6675704989154012, "micro/f1_ci": {"90": [0.6478782487489827, 0.686330134406657], "95": [0.643485580441, 0.689784971727218]}, "micro/recall": 0.6388168137000519, "micro/precision": 0.6990346394094265, "macro/f1": 0.6307734401161805, "macro/f1_ci": {"90": [0.6086331719773058, 0.650352710597749], "95": [0.6044641232125019, 0.6551010145551667]}, "macro/recall": 0.6085863177550797, "macro/precision": 0.6616549497337102, "per_entity_metric": {"corporation": {"f1": 0.5888594164456233, "f1_ci": {"90": [0.5313343849856409, 0.6377922295678834], "95": [0.5233514118457299, 0.6485181964142359]}, "precision": 0.5967741935483871, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5524296675191815, "f1_ci": {"90": [0.49640524689644966, 0.6021000260333806], "95": [0.48969679633867275, 0.610844280240832]}, "precision": 0.5094339622641509, "recall": 0.6033519553072626}, "event": {"f1": 0.4888888888888889, "f1_ci": {"90": [0.43619555287353434, 0.5418402724977951], "95": [0.42727297146820076, 0.5512992831541219]}, "precision": 0.5260869565217391, "recall": 0.45660377358490567}, "group": {"f1": 0.5985130111524165, "f1_ci": {"90": [0.5485224195478304, 0.650063025210084], "95": [0.534749739311783, 0.6577725388960302]}, "precision": 0.7092511013215859, "recall": 0.5176848874598071}, "location": {"f1": 0.6666666666666666, "f1_ci": {"90": [0.598896163716523, 0.7267257383966245], "95": [0.5836553829874008, 0.744198416625433]}, "precision": 0.6607142857142857, "recall": 0.6727272727272727}, "person": {"f1": 0.8349178910976663, "f1_ci": {"90": [0.8089173822232536, 0.8576861436442418], "95": [0.8028489054150965, 0.8630879876393839]}, "precision": 0.8609625668449198, "recall": 0.8104026845637584}, "product": {"f1": 0.6851385390428212, "f1_ci": {"90": [0.6308652472005644, 0.7338255988615702], "95": [0.6200345849802371, 0.7411211707957673]}, "precision": 0.768361581920904, "recall": 0.6181818181818182}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6646206308610401, "micro/f1_ci": {"90": [0.6554125820888649, 0.6736489128168938], "95": [0.6533077908395879, 0.675252368755536]}, "micro/recall": 0.6761100832562442, "micro/precision": 0.653515144741254, "macro/f1": 0.6187282305429461, "macro/f1_ci": {"90": [0.6086007046046046, 0.6274752439680484], "95": [0.6064349641468447, 0.6292100251466678]}, "macro/recall": 0.6359356515638321, "macro/precision": 0.6069581336386037, "per_entity_metric": {"corporation": {"f1": 0.545042492917847, "f1_ci": {"90": [0.5210565034619189, 0.570455308114704], "95": [0.5163483236977213, 0.5768635272388254]}, "precision": 0.5560693641618497, "recall": 0.5344444444444445}, "creative_work": {"f1": 0.47362250879249707, "f1_ci": {"90": [0.44319138030931055, 0.5049788934117292], "95": [0.4364029194303145, 0.5107778906673237]}, "precision": 0.41435897435897434, "recall": 0.5526675786593708}, "event": {"f1": 0.4915336236090953, "f1_ci": {"90": [0.4684507714181196, 0.5143994098920723], "95": [0.46447741808246684, 0.5187658305407751]}, "precision": 0.5247933884297521, "recall": 0.462238398544131}, "group": {"f1": 0.623768877216021, "f1_ci": {"90": [0.6036063111513918, 0.6459784481752944], "95": [0.5996059953988204, 0.6488495817907584]}, "precision": 0.6217277486910995, "recall": 0.6258234519104084}, "location": {"f1": 0.6754716981132076, "f1_ci": {"90": [0.6502264241541174, 0.7009141138003405], "95": [0.643485938839921, 0.7058891849422697]}, "precision": 0.61441647597254, "recall": 0.75}, "person": {"f1": 0.8414922656960875, "f1_ci": {"90": [0.8306318756851475, 0.8517340317116006], "95": [0.8291240468904854, 0.8531652713056682]}, "precision": 0.8307581746316924, "recall": 0.8525073746312685}, "product": {"f1": 0.6801661474558671, "f1_ci": {"90": [0.6576924955753543, 0.7017577078587071], "95": [0.6537204296451585, 0.7052648077874939]}, "precision": 0.6865828092243187, "recall": 0.6738683127572016}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7759088442756376, "micro/f1_ci": {}, "micro/recall": 0.742086144265698, "micro/precision": 0.8129619101762365, "macro/f1": 0.7759088442756376, "macro/f1_ci": {}, "macro/recall": 0.742086144265698, "macro/precision": 0.8129619101762365}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7953163189905075, "micro/f1_ci": {}, "micro/recall": 0.8090667283450907, "micro/precision": 0.7820254862508383, "macro/f1": 0.7953163189905075, "macro/f1_ci": {}, "macro/recall": 0.8090667283450907, "macro/precision": 0.7820254862508383}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "vinai/bertweet-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|