model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.dev.json +0 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-dec2020-tweetner7-2020
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6286510590858417
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6068661213947482
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6520582793709528
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5826193263874178
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5604713618790561
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6077023445382103
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7649255811360722
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7383770985794231
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7934543772406615
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6439333862014274
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.65625
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6320705760249092
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6031387609223192
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6135739317575558
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5938222468969824
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7565424266455195
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7710129310344828
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7426050856253243
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-dec2020-tweetner7-2020
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2020` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6286510590858417
|
94 |
+
- Precision (micro): 0.6068661213947482
|
95 |
+
- Recall (micro): 0.6520582793709528
|
96 |
+
- F1 (macro): 0.5826193263874178
|
97 |
+
- Precision (macro): 0.5604713618790561
|
98 |
+
- Recall (macro): 0.6077023445382103
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.49895397489539745
|
104 |
+
- creative_work: 0.44903064415259536
|
105 |
+
- event: 0.43684450524395807
|
106 |
+
- group: 0.5762400489895897
|
107 |
+
- location: 0.6437541308658294
|
108 |
+
- person: 0.8228613299139035
|
109 |
+
- product: 0.6506506506506508
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6202748254882829, 0.6378443623614226]
|
114 |
+
- 95%: [0.6184976815588282, 0.6399304136434694]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6202748254882829, 0.6378443623614226]
|
117 |
+
- 95%: [0.6184976815588282, 0.6399304136434694]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-dec2020-tweetner7-2020")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2020
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: cardiffnlp/twitter-roberta-base-dec2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2020.dev": {"micro/f1": 0.6386958845537146, "micro/f1_ci": {}, "micro/recall": 0.6243469174503657, "micro/precision": 0.6537199124726477, "macro/f1": 0.5845688851603238, "macro/f1_ci": {}, "macro/recall": 0.5723876957337674, "macro/precision": 0.5986924134163691, "per_entity_metric": {"corporation": {"f1": 0.4895833333333333, "f1_ci": {}, "precision": 0.5193370165745856, "recall": 0.4630541871921182}, "creative_work": {"f1": 0.5089058524173028, "f1_ci": {}, "precision": 0.5405405405405406, "recall": 0.4807692307692308}, "event": {"f1": 0.39285714285714285, "f1_ci": {}, "precision": 0.39919354838709675, "recall": 0.38671875}, "group": {"f1": 0.5296610169491525, "f1_ci": {}, "precision": 0.5102040816326531, "recall": 0.5506607929515418}, "location": {"f1": 0.6413043478260869, "f1_ci": {}, "precision": 0.6310160427807486, "recall": 0.6519337016574586}, "person": {"f1": 0.8760757314974182, "f1_ci": {}, "precision": 0.9024822695035462, "recall": 0.8511705685618729}, "product": {"f1": 0.6535947712418301, "f1_ci": {}, "precision": 0.6880733944954128, "recall": 0.6224066390041494}}}, "2021.test": {"micro/f1": 0.6286510590858417, "micro/f1_ci": {"90": [0.6202748254882829, 0.6378443623614226], "95": [0.6184976815588282, 0.6399304136434694]}, "micro/recall": 0.6520582793709528, "micro/precision": 0.6068661213947482, "macro/f1": 0.5826193263874178, "macro/f1_ci": {"90": [0.5730758041885631, 0.5923948982929359], "95": [0.5710195948548461, 0.5939565674784726]}, "macro/recall": 0.6077023445382103, "macro/precision": 0.5604713618790561, "per_entity_metric": {"corporation": {"f1": 0.49895397489539745, "f1_ci": {"90": [0.4740900380273677, 0.5254155321720864], "95": [0.46839534789719484, 0.5299778434362932]}, "precision": 0.47134387351778656, "recall": 0.53}, "creative_work": {"f1": 0.44903064415259536, "f1_ci": {"90": [0.41834966834966836, 0.47882006500914226], "95": [0.4111298735015004, 0.48611544056525346]}, "precision": 0.41359447004608296, "recall": 0.4911080711354309}, "event": {"f1": 0.43684450524395807, "f1_ci": {"90": [0.4132443746794808, 0.4595091419890372], "95": [0.4083257469654529, 0.46410276457343014]}, "precision": 0.43784277879341865, "recall": 0.43585077343039125}, "group": {"f1": 0.5762400489895897, "f1_ci": {"90": [0.5565039530120158, 0.5954325184333603], "95": [0.5526282709880291, 0.5985174584532377]}, "precision": 0.5383295194508009, "recall": 0.6198945981554678}, "location": {"f1": 0.6437541308658294, "f1_ci": {"90": [0.6177487356743749, 0.6711433093555442], "95": [0.6108565669901822, 0.6758728290717165]}, "precision": 0.6110414052697616, "recall": 0.6801675977653632}, "person": {"f1": 0.8228613299139035, "f1_ci": {"90": [0.8118870888802372, 0.8341448223449718], "95": [0.8093167258284707, 0.8359517294083364]}, "precision": 0.8176192209683291, "recall": 0.8281710914454278}, "product": {"f1": 0.6506506506506508, "f1_ci": {"90": [0.628450730150472, 0.672123577203644], "95": [0.6258410385414003, 0.6746884809110153]}, "precision": 0.6335282651072125, "recall": 0.668724279835391}}}, "2020.test": {"micro/f1": 0.6439333862014274, "micro/f1_ci": {"90": [0.6234163633400337, 0.6617054879836103], "95": [0.620296601140631, 0.6652159767398678]}, "micro/recall": 0.6320705760249092, "micro/precision": 0.65625, "macro/f1": 0.6031387609223192, "macro/f1_ci": {"90": [0.5814650043179064, 0.6214737405579287], "95": [0.5769478753146529, 0.6247167595269991]}, "macro/recall": 0.5938222468969824, "macro/precision": 0.6135739317575558, "per_entity_metric": {"corporation": {"f1": 0.5518987341772151, "f1_ci": {"90": [0.495774647887324, 0.6018518518518519], "95": [0.481054054054054, 0.6117767106842738]}, "precision": 0.5343137254901961, "recall": 0.5706806282722513}, "creative_work": {"f1": 0.5172413793103449, "f1_ci": {"90": [0.4618975618975619, 0.5738577425556122], "95": [0.44866459269501097, 0.5829040366996946]}, "precision": 0.5325443786982249, "recall": 0.5027932960893855}, "event": {"f1": 0.42911877394636017, "f1_ci": {"90": [0.38280066287878795, 0.4780351622131284], "95": [0.3752165216808781, 0.4866137266023824]}, "precision": 0.4357976653696498, "recall": 0.4226415094339623}, "group": {"f1": 0.559463986599665, "f1_ci": {"90": [0.5110015268737078, 0.6065222988556122], "95": [0.5, 0.6178964376394552]}, "precision": 0.583916083916084, "recall": 0.5369774919614148}, "location": {"f1": 0.6546546546546548, "f1_ci": {"90": [0.5867749707685221, 0.7157319269359402], "95": [0.5732812621501827, 0.7224163619125017]}, "precision": 0.6488095238095238, "recall": 0.6606060606060606}, "person": {"f1": 0.8397600685518423, "f1_ci": {"90": [0.8127127749861485, 0.8636382189239333], "95": [0.806420397665552, 0.86896508864127]}, "precision": 0.8581436077057794, "recall": 0.8221476510067114}, "product": {"f1": 0.669833729216152, "f1_ci": {"90": [0.6180720440280364, 0.715330305760356], "95": [0.6086568322981365, 0.7247099284158108]}, "precision": 0.7014925373134329, "recall": 0.6409090909090909}}}, "2021.test (span detection)": {"micro/f1": 0.7649255811360722, "micro/f1_ci": {}, "micro/recall": 0.7934543772406615, "micro/precision": 0.7383770985794231, "macro/f1": 0.7649255811360722, "macro/f1_ci": {}, "macro/recall": 0.7934543772406615, "macro/precision": 0.7383770985794231}, "2020.test (span detection)": {"micro/f1": 0.7565424266455195, "micro/f1_ci": {}, "micro/recall": 0.7426050856253243, "micro/precision": 0.7710129310344828, "macro/f1": 0.7565424266455195, "macro/f1_ci": {}, "macro/recall": 0.7426050856253243, "macro/precision": 0.7710129310344828}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6439333862014274, "micro/f1_ci": {"90": [0.6234163633400337, 0.6617054879836103], "95": [0.620296601140631, 0.6652159767398678]}, "micro/recall": 0.6320705760249092, "micro/precision": 0.65625, "macro/f1": 0.6031387609223192, "macro/f1_ci": {"90": [0.5814650043179064, 0.6214737405579287], "95": [0.5769478753146529, 0.6247167595269991]}, "macro/recall": 0.5938222468969824, "macro/precision": 0.6135739317575558, "per_entity_metric": {"corporation": {"f1": 0.5518987341772151, "f1_ci": {"90": [0.495774647887324, 0.6018518518518519], "95": [0.481054054054054, 0.6117767106842738]}, "precision": 0.5343137254901961, "recall": 0.5706806282722513}, "creative_work": {"f1": 0.5172413793103449, "f1_ci": {"90": [0.4618975618975619, 0.5738577425556122], "95": [0.44866459269501097, 0.5829040366996946]}, "precision": 0.5325443786982249, "recall": 0.5027932960893855}, "event": {"f1": 0.42911877394636017, "f1_ci": {"90": [0.38280066287878795, 0.4780351622131284], "95": [0.3752165216808781, 0.4866137266023824]}, "precision": 0.4357976653696498, "recall": 0.4226415094339623}, "group": {"f1": 0.559463986599665, "f1_ci": {"90": [0.5110015268737078, 0.6065222988556122], "95": [0.5, 0.6178964376394552]}, "precision": 0.583916083916084, "recall": 0.5369774919614148}, "location": {"f1": 0.6546546546546548, "f1_ci": {"90": [0.5867749707685221, 0.7157319269359402], "95": [0.5732812621501827, 0.7224163619125017]}, "precision": 0.6488095238095238, "recall": 0.6606060606060606}, "person": {"f1": 0.8397600685518423, "f1_ci": {"90": [0.8127127749861485, 0.8636382189239333], "95": [0.806420397665552, 0.86896508864127]}, "precision": 0.8581436077057794, "recall": 0.8221476510067114}, "product": {"f1": 0.669833729216152, "f1_ci": {"90": [0.6180720440280364, 0.715330305760356], "95": [0.6086568322981365, 0.7247099284158108]}, "precision": 0.7014925373134329, "recall": 0.6409090909090909}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6286510590858417, "micro/f1_ci": {"90": [0.6202748254882829, 0.6378443623614226], "95": [0.6184976815588282, 0.6399304136434694]}, "micro/recall": 0.6520582793709528, "micro/precision": 0.6068661213947482, "macro/f1": 0.5826193263874178, "macro/f1_ci": {"90": [0.5730758041885631, 0.5923948982929359], "95": [0.5710195948548461, 0.5939565674784726]}, "macro/recall": 0.6077023445382103, "macro/precision": 0.5604713618790561, "per_entity_metric": {"corporation": {"f1": 0.49895397489539745, "f1_ci": {"90": [0.4740900380273677, 0.5254155321720864], "95": [0.46839534789719484, 0.5299778434362932]}, "precision": 0.47134387351778656, "recall": 0.53}, "creative_work": {"f1": 0.44903064415259536, "f1_ci": {"90": [0.41834966834966836, 0.47882006500914226], "95": [0.4111298735015004, 0.48611544056525346]}, "precision": 0.41359447004608296, "recall": 0.4911080711354309}, "event": {"f1": 0.43684450524395807, "f1_ci": {"90": [0.4132443746794808, 0.4595091419890372], "95": [0.4083257469654529, 0.46410276457343014]}, "precision": 0.43784277879341865, "recall": 0.43585077343039125}, "group": {"f1": 0.5762400489895897, "f1_ci": {"90": [0.5565039530120158, 0.5954325184333603], "95": [0.5526282709880291, 0.5985174584532377]}, "precision": 0.5383295194508009, "recall": 0.6198945981554678}, "location": {"f1": 0.6437541308658294, "f1_ci": {"90": [0.6177487356743749, 0.6711433093555442], "95": [0.6108565669901822, 0.6758728290717165]}, "precision": 0.6110414052697616, "recall": 0.6801675977653632}, "person": {"f1": 0.8228613299139035, "f1_ci": {"90": [0.8118870888802372, 0.8341448223449718], "95": [0.8093167258284707, 0.8359517294083364]}, "precision": 0.8176192209683291, "recall": 0.8281710914454278}, "product": {"f1": 0.6506506506506508, "f1_ci": {"90": [0.628450730150472, 0.672123577203644], "95": [0.6258410385414003, 0.6746884809110153]}, "precision": 0.6335282651072125, "recall": 0.668724279835391}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7565424266455195, "micro/f1_ci": {}, "micro/recall": 0.7426050856253243, "micro/precision": 0.7710129310344828, "macro/f1": 0.7565424266455195, "macro/f1_ci": {}, "macro/recall": 0.7426050856253243, "macro/precision": 0.7710129310344828}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7649255811360722, "micro/f1_ci": {}, "micro/recall": 0.7934543772406615, "micro/precision": 0.7383770985794231, "macro/f1": 0.7649255811360722, "macro/f1_ci": {}, "macro/recall": 0.7934543772406615, "macro/precision": 0.7383770985794231}
|
eval/prediction.2020.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2020", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-dec2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|