model update
Browse files- README.md +176 -0
- eval/metric.test_2020.json +1 -0
- eval/{metric.json → metric.test_2021.json} +1 -1
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-dec2020-tweetner7-2021
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6397858647986788
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6303445180114465
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6495143385753932
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5891304279072724
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5792901831181549
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6004916851711928
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7786763868322132
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7671417349343508
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7905632011102116
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6307439824945295
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6668594563331406
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5983393876491956
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5851265852701386
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6174792176025484
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5588985785349839
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7534883720930233
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.796875
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7145822522055008
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-dec2020-tweetner7-2021
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6397858647986788
|
94 |
+
- Precision (micro): 0.6303445180114465
|
95 |
+
- Recall (micro): 0.6495143385753932
|
96 |
+
- F1 (macro): 0.5891304279072724
|
97 |
+
- Precision (macro): 0.5792901831181549
|
98 |
+
- Recall (macro): 0.6004916851711928
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5104384133611691
|
104 |
+
- creative_work: 0.4085603112840467
|
105 |
+
- event: 0.46204311152764754
|
106 |
+
- group: 0.6021505376344086
|
107 |
+
- location: 0.6555407209612816
|
108 |
+
- person: 0.826392644672796
|
109 |
+
- product: 0.658787255909558
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6313701951851352, 0.6488151576987361]
|
114 |
+
- 95%: [0.6299593452104588, 0.6503478811637856]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6313701951851352, 0.6488151576987361]
|
117 |
+
- 95%: [0.6299593452104588, 0.6503478811637856]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2021/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2021/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-dec2020-tweetner7-2021")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: cardiffnlp/twitter-roberta-base-dec2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 0.0001
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2021/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6307439824945295, "micro/f1_ci": {"90": [0.6102472947732527, 0.650404791893514], "95": [0.6066659244881646, 0.6551370800608569]}, "micro/recall": 0.5983393876491956, "micro/precision": 0.6668594563331406, "macro/f1": 0.5851265852701386, "macro/f1_ci": {"90": [0.5626100847663879, 0.6066985869733091], "95": [0.5586539588597282, 0.6118777410922309]}, "macro/recall": 0.5588985785349839, "macro/precision": 0.6174792176025484, "per_entity_metric": {"corporation": {"f1": 0.5326370757180157, "f1_ci": {"90": [0.4769179826795721, 0.5844542430690521], "95": [0.46745014245014244, 0.592230183609494]}, "precision": 0.53125, "recall": 0.5340314136125655}, "creative_work": {"f1": 0.47093023255813954, "f1_ci": {"90": [0.413991114256507, 0.5249247836611491], "95": [0.3999667774086378, 0.5404186843796873]}, "precision": 0.4909090909090909, "recall": 0.45251396648044695}, "event": {"f1": 0.40918580375782876, "f1_ci": {"90": [0.35343385463402127, 0.46590993956852067], "95": [0.34434854592571257, 0.47656826872362873]}, "precision": 0.45794392523364486, "recall": 0.36981132075471695}, "group": {"f1": 0.5645756457564576, "f1_ci": {"90": [0.513329584802793, 0.6181970970206264], "95": [0.5, 0.6299714678464579]}, "precision": 0.6623376623376623, "recall": 0.4919614147909968}, "location": {"f1": 0.6486486486486486, "f1_ci": {"90": [0.5855182926829268, 0.7062155275025566], "95": [0.5733322475570033, 0.7143000573723465]}, "precision": 0.6428571428571429, "recall": 0.6545454545454545}, "person": {"f1": 0.8209982788296041, "f1_ci": {"90": [0.7960340427408376, 0.8444893951553826], "95": [0.7903046285974032, 0.8484873021715126]}, "precision": 0.842756183745583, "recall": 0.8003355704697986}, "product": {"f1": 0.648910411622276, "f1_ci": {"90": [0.5963697060288989, 0.698992051833587], "95": [0.5846028037383177, 0.7090498852352677]}, "precision": 0.694300518134715, "recall": 0.6090909090909091}}}
|
eval/{metric.json → metric.test_2021.json}
RENAMED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"micro/f1": 0.6397858647986788, "micro/f1_ci": {"90": [0.6313701951851352, 0.6488151576987361], "95": [0.6299593452104588, 0.6503478811637856]}, "micro/recall": 0.6495143385753932, "micro/precision": 0.6303445180114465, "macro/f1": 0.5891304279072724, "macro/f1_ci": {"90": [0.579831722519424, 0.5990703030466004], "95": [0.5785446223576134, 0.600957755164742]}, "macro/recall": 0.6004916851711928, "macro/precision": 0.5792901831181549, "per_entity_metric": {"corporation": {"f1": 0.5104384133611691, "f1_ci": {"90": [0.48464818510975904, 0.5356305362374818], "95": [0.4800820285084694, 0.540708357567894]}, "precision": 0.4812992125984252, "recall": 0.5433333333333333}, "creative_work": {"f1": 0.4085603112840467, "f1_ci": {"90": [0.38044431652186644, 0.4388461424718239], "95": [0.3756210936956249, 0.44642063710750324]}, "precision": 0.3884093711467324, "recall": 0.43091655266757867}, "event": {"f1": 0.46204311152764754, "f1_ci": {"90": [0.4365142040968089, 0.48499682354280577], "95": [0.43265719518867995, 0.48944974563413657]}, "precision": 0.47632850241545893, "recall": 0.44858962693357596}, "group": {"f1": 0.6021505376344086, "f1_ci": {"90": [0.5829088781500328, 0.6233689895493891], "95": [0.5796706980466934, 0.6273276006621189]}, "precision": 0.6145404663923183, "recall": 0.5902503293807642}, "location": {"f1": 0.6555407209612816, "f1_ci": {"90": [0.6288757917555804, 0.6832310667607882], "95": [0.6248056430748739, 0.6864471234713486]}, "precision": 0.6278772378516624, "recall": 0.6857541899441341}, "person": {"f1": 0.826392644672796, "f1_ci": {"90": [0.8161829713008001, 0.8365602955666955], "95": [0.8139679906043208, 0.838441808248624]}, "precision": 0.8084656084656084, "recall": 0.8451327433628318}, "product": {"f1": 0.658787255909558, "f1_ci": {"90": [0.6374469229500973, 0.6802850060689898], "95": [0.6341189720797799, 0.6837985569099514]}, "precision": 0.6581108829568788, "recall": 0.6594650205761317}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7534883720930233, "micro/f1_ci": {}, "micro/recall": 0.7145822522055008, "micro/precision": 0.796875, "macro/f1": 0.7534883720930233, "macro/f1_ci": {}, "macro/recall": 0.7145822522055008, "macro/precision": 0.796875}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7786763868322132, "micro/f1_ci": {}, "micro/recall": 0.7905632011102116, "micro/precision": 0.7671417349343508, "macro/f1": 0.7786763868322132, "macro/f1_ci": {}, "macro/recall": 0.7905632011102116, "macro/precision": 0.7671417349343508}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-dec2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|