File size: 5,338 Bytes
3ef8f29
 
 
 
 
 
 
2e470eb
3ef8f29
 
 
a8394fe
 
 
3ef8f29
 
941cf6b
12be96c
 
 
 
03db82b
 
3ef8f29
 
 
 
03db82b
 
3ef8f29
 
941cf6b
 
 
3ef8f29
 
 
 
 
 
 
 
27ef88b
3ef8f29
 
 
27ef88b
 
3ef8f29
1ea5ba8
3ef8f29
 
 
 
 
 
 
27ef88b
3ef8f29
 
 
 
 
 
 
27ef88b
 
 
3ef8f29
 
27ef88b
3ef8f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941cf6b
3ef8f29
 
 
 
 
 
 
 
 
03db82b
3ef8f29
 
 
 
 
2e470eb
 
 
3ef8f29
 
 
 
 
 
 
 
 
ccbb8f0
 
 
2e470eb
 
 
 
ccbb8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea5ba8
ccbb8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e470eb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
base_model: llm-jp/llm-jp-3-13b
library_name: peft
tags:
- text-generation-inference
- llama
- trl
license: apache-2.0
---

# Model Card for Model ID
- **ベースモデル :** llm-jp/llm-jp-3-13b 
- **対応言語 :** English, Japanese 
- **ライセンス :** apache-2.0

### 注意

1. プロンプトは次の形式でのみ学習しています。
2. モデルはアダプターのみですので,利用する際はベースモデルのllm-jp/llm-jp-3-13bも読み込むようにしてください。

~~~: プロンプトの形式
"""
<s>以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい

### 指示:
{instruction}

### 応答:
"""
~~~


### テキスト生成のサンプルコード


~~~python
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    BitsAndBytesConfig,
)
from peft import LoraConfig, PeftModel
from transformers import TextStreamer


BASE_MODEL = "llm-jp/llm-jp-3-13b"
PEFT_MODEL = "togepi55/llm-jp-3-13b-it"

tokenizer = AutoTokenizer.from_pretrained(PEFT_MODEL)
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=False,
)

base_model = AutoModelForCausalLM.from_pretrained(
            BASE_MODEL,
            device_map="auto",
            quantization_config=bnb_config,
            torch_dtype="auto",
            trust_remote_code=True,
        )


model = PeftModel.from_pretrained(base_model, PEFT_MODEL)

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)


instruction = "東京は日本の"

prompt = f"<s>以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい\n\n### 指示:\n{instruction}\n\n### 応答:\n"
print(prompt)
model_input = tokenizer(prompt, return_tensors="pt").to(model.device)
input_ids = model_input["input_ids"]

model.eval()
with torch.no_grad():
    result = model.generate(
              input_ids,
              max_new_tokens=300,
              attention_mask = model_input.attention_mask,
              pad_token_id=tokenizer.pad_token_id,
              eos_token_id=tokenizer.eos_token_id,
              do_sample=False,
              streamer=streamer,
              repetition_penalty=1.02,
          )
    print("----"*20)
    del input_ids
    torch.cuda.empty_cache()
~~~





## Bias, Risks, and Limitations
RLHF,DPOを実施していないため不適切な表現が出力される可能性があります。

### Training Details
指示チューニングデータとして下記のものを利用しました。
* ichikara-instruction-003-001-1.json
* ichikara-instruction-003-002-1.json 
* elyza/ELYZA-tasks-100

### ライセンス
* ichikara-instructionデータセットのライセンスはcc-by-nc-sa,ELYZA-tasks-100のライセンスはcc-by-sa-4.0になっております。

### SFTの概要
* 4bit量子化
* LoRAによるSFT
* learning_rate = 2e-4
* optim="adamw_torch_fused"
* lr_scheduler_type="cosine"
* weight_decay=0.01





# elyza-tasks-100-TV_0.jsonlでの出力方法

特定タスクであるelyza-tasks-100-TV_0.jsonlに記載されている指示に対する返答のサンプル出力コードは次のようになります。


~~~
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    BitsAndBytesConfig,
)
from peft import LoraConfig, PeftModel
from datasets import load_dataset


BASE_MODEL = "llm-jp/llm-jp-3-13b"
PEFT_MODEL = "togepi55/llm-jp-3-13b-it"

tokenizer = AutoTokenizer.from_pretrained(PEFT_MODEL)
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=False,
)

base_model = AutoModelForCausalLM.from_pretrained(
            BASE_MODEL,
            device_map="auto",
            quantization_config=bnb_config,
            torch_dtype="auto",
            trust_remote_code=True,
        )

model = PeftModel.from_pretrained(base_model, PEFT_MODEL)

# elyza-tasks-100-TV_0.jsonl データの読み込み
from datasets import load_dataset

dataset = load_dataset("json", data_files="./elyza-tasks-100-TV_0.jsonl", split="train")


results = []

for num in tqdm(range(100)):
    instruction = dataset["input"][num]

    prompt = f"<s>以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい\n\n### 指示:\n{instruction}\n\n### 応答:\n"

    model_input = tokenizer(prompt, return_tensors="pt").to(model.device)
    input_ids = model_input["input_ids"]

    with torch.no_grad():
        outputs = model.generate(
            input_ids,
            max_new_tokens=300,
            attention_mask = model_input.attention_mask,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
            do_sample=False,
            repetition_penalty=1.02,
        )[0]
    output = tokenizer.decode(outputs[input_ids.size(1):], skip_special_tokens=True)
    results.append({"task_id": num, "input": instruction, "output": output})



# 保存する場合
import json
with open("output.jsonl", "wt", encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
~~~