Text Generation
Transformers
Safetensors
English
stripedhyena
custom_code
File size: 2,749 Bytes
2f9e2c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch


def column_split(x, num_heads, head_size):
    """Split a tensor with `num_heads` alongside the head dimension, instead of
    across heads. Fixed to three projections
    """

    x_reshaped = x.reshape(
        x.shape[0],
        num_heads,
        3 * head_size,
    )

    x2, x1, v = (
        x_reshaped[:, :, :head_size],
        x_reshaped[
            :,
            :,
            head_size : 2 * head_size,
        ],
        x_reshaped[:, :, 2 * head_size :],
    )
    x2, x1, v = (
        x2.reshape(x2.shape[0], -1),
        x1.reshape(x1.shape[0], -1),
        v.reshape(v.shape[0], -1),
    )
    return x2, x1, v


def get_init_from_string(init_str):
    if type(init_str) == str:
        if init_str == "torch.nn.init.zeros_":
            return torch.nn.init.zeros_
        elif init_str == "torch.nn.init.xavier_uniform_":
            return torch.nn.init.xavier_uniform_
        elif init_str == "torch.nn.init.xavier_normal_":
            return torch.nn.init.xavier_normal_
        else:
            raise ValueError(f"Unrecognized init {init_str}")


def print_rank_0(message, debug=False, end="\n"):
    """Print from rank 0 only."""
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == 0:
            print(message, flush=True, end=end)
    else:
        print(message, flush=True, end=end)


class dotdict(dict):
    """dot.notation access to dictionary attributes"""

    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__


def ensure_divisibility(numerator, denominator):
    """Ensure that numerator is divisible by the denominator."""
    assert numerator % denominator == 0, "{} is not divisible by {}".format(numerator, denominator)


def divide(numerator, denominator):
    """Ensure that numerator is divisible by the denominator and return
    the division value."""
    ensure_divisibility(numerator, denominator)
    return numerator // denominator


class VocabUtility:
    """Split the vocabulary into `world_size` chunks amd return the
    first and last index of the vocabulary belonging to the `rank`
    partition: Note that indices in [first, last]"""

    @staticmethod
    def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size):
        index_f = rank * per_partition_vocab_size
        index_l = index_f + per_partition_vocab_size
        return index_f, index_l

    @staticmethod
    def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
        per_partition_vocab_size = divide(global_vocab_size, world_size)
        return VocabUtility.vocab_range_from_per_partition_vocab_size(
            per_partition_vocab_size, rank, world_size
        )