File size: 1,413 Bytes
2f33b0f f6a0978 2f33b0f f6a0978 2f33b0f 4d40187 2f33b0f f6a0978 2f33b0f a44d63b 2f33b0f a44d63b 2f33b0f a44d63b 2f33b0f f6a0978 2f33b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
tags:
- autotrain
- text-classification
language:
- tr
- en
widget:
- text: Aldığım hizmetten çok memnun kaldım... Yeniden göklerde görüşmek üzere...
datasets:
- tkurtulus/thycomments
co2_eq_emissions:
emissions: 1.2718440164245879
metrics:
- accuracy
pipeline_tag: text-classification
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 3023686751
- CO2 Emissions (in grams): 1.2718
## Validation Metrics
- Loss: 0.489
- Accuracy: 0.839
- Macro F1: 0.767
- Micro F1: 0.839
- Weighted F1: 0.832
- Macro Precision: 0.782
- Micro Precision: 0.839
- Weighted Precision: 0.845
- Macro Recall: 0.770
- Micro Recall: 0.839
- Weighted Recall: 0.839
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love to fly with Turkish Airlines"}' https://api-inference.huggingface.co/models/tkurtulus/TurkishAirlines-SentimentAnalysisModel
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("tkurtulus/TurkishAirlines-SentimentAnalysisModel")
tokenizer = AutoTokenizer.from_pretrained("tkurtulus/TurkishAirlines-SentimentAnalysisModel")
inputs = tokenizer("I love to fly with Turkish Airlines", return_tensors="pt")
outputs = model(**inputs)
``` |