Upload train_st_gooaq.py
Browse files- train_st_gooaq.py +87 -0
train_st_gooaq.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 onwards Answer.AI, LightOn, and contributors
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
from datasets import load_dataset
|
7 |
+
from sentence_transformers import (
|
8 |
+
SentenceTransformer,
|
9 |
+
SentenceTransformerTrainer,
|
10 |
+
SentenceTransformerTrainingArguments,
|
11 |
+
)
|
12 |
+
from sentence_transformers.evaluation import NanoBEIREvaluator
|
13 |
+
from sentence_transformers.losses import CachedMultipleNegativesRankingLoss
|
14 |
+
from sentence_transformers.training_args import BatchSamplers
|
15 |
+
|
16 |
+
def main():
|
17 |
+
# parse the lr & model name
|
18 |
+
parser = argparse.ArgumentParser()
|
19 |
+
parser.add_argument("--lr", type=float, default=8e-5)
|
20 |
+
parser.add_argument("--model_name", type=str, default="answerdotai/ModernBERT-base")
|
21 |
+
args = parser.parse_args()
|
22 |
+
lr = args.lr
|
23 |
+
model_name = args.model_name
|
24 |
+
model_shortname = model_name.split("/")[-1]
|
25 |
+
|
26 |
+
# 1. Load a model to finetune
|
27 |
+
model = SentenceTransformer(model_name)
|
28 |
+
|
29 |
+
# 2. Load a dataset to finetune on
|
30 |
+
dataset = load_dataset("sentence-transformers/gooaq", split="train")
|
31 |
+
dataset_dict = dataset.train_test_split(test_size=1_000, seed=12)
|
32 |
+
train_dataset = dataset_dict["train"]
|
33 |
+
eval_dataset = dataset_dict["test"]
|
34 |
+
|
35 |
+
# 3. Define a loss function
|
36 |
+
loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=128) # Increase mini_batch_size if you have enough VRAM
|
37 |
+
|
38 |
+
run_name = f"{model_shortname}-gooaq-{lr}"
|
39 |
+
# 4. (Optional) Specify training arguments
|
40 |
+
args = SentenceTransformerTrainingArguments(
|
41 |
+
# Required parameter:
|
42 |
+
output_dir=f"output/{model_shortname}/{run_name}",
|
43 |
+
# Optional training parameters:
|
44 |
+
num_train_epochs=1,
|
45 |
+
per_device_train_batch_size=2048,
|
46 |
+
per_device_eval_batch_size=2048,
|
47 |
+
learning_rate=lr,
|
48 |
+
warmup_ratio=0.05,
|
49 |
+
fp16=False, # Set to False if GPU can't handle FP16
|
50 |
+
bf16=True, # Set to True if GPU supports BF16
|
51 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # (Cached)MultipleNegativesRankingLoss benefits from no duplicates
|
52 |
+
# Optional tracking/debugging parameters:
|
53 |
+
eval_strategy="steps",
|
54 |
+
eval_steps=50,
|
55 |
+
save_strategy="steps",
|
56 |
+
save_steps=50,
|
57 |
+
save_total_limit=2,
|
58 |
+
logging_steps=10,
|
59 |
+
run_name=run_name, # Used in `wandb`, `tensorboard`, `neptune`, etc. if installed
|
60 |
+
)
|
61 |
+
|
62 |
+
# 5. (Optional) Create an evaluator & evaluate the base model
|
63 |
+
dev_evaluator = NanoBEIREvaluator(dataset_names=["NQ", "MSMARCO"])
|
64 |
+
dev_evaluator(model)
|
65 |
+
|
66 |
+
# 6. Create a trainer & train
|
67 |
+
trainer = SentenceTransformerTrainer(
|
68 |
+
model=model,
|
69 |
+
args=args,
|
70 |
+
train_dataset=train_dataset,
|
71 |
+
eval_dataset=eval_dataset,
|
72 |
+
loss=loss,
|
73 |
+
evaluator=dev_evaluator,
|
74 |
+
)
|
75 |
+
trainer.train()
|
76 |
+
|
77 |
+
# 7. (Optional) Evaluate the trained model on the evaluator after training
|
78 |
+
dev_evaluator(model)
|
79 |
+
|
80 |
+
# 8. Save the model
|
81 |
+
model.save_pretrained(f"output/{model_shortname}/{run_name}/final")
|
82 |
+
|
83 |
+
# 9. (Optional) Push it to the Hugging Face Hub
|
84 |
+
model.push_to_hub(run_name, private=False)
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
main()
|