tomaarsen HF staff commited on
Commit
67a57b4
1 Parent(s): 0edfc3e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:CosineSimilarityLoss
10
+ base_model: sentence-transformers/all-mpnet-base-v2
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: A boy is vacuuming.
24
+ sentences:
25
+ - A little boy is vacuuming the floor.
26
+ - A woman is riding an elephant.
27
+ - People are sitting on benches.
28
+ - source_sentence: A man shoots a man.
29
+ sentences:
30
+ - The man is aiming a gun.
31
+ - A man is tracking in the wood.
32
+ - A woman leading a white horse.
33
+ - source_sentence: A plane in the sky.
34
+ sentences:
35
+ - A plane rides on a road.
36
+ - A tiger walks around aimlessly.
37
+ - Two dogs playing on the shore.
38
+ - source_sentence: A baby is laughing.
39
+ sentences:
40
+ - The baby laughed in his car seat.
41
+ - A toddler walks down a hallway.
42
+ - There are dogs in the forest.
43
+ - source_sentence: The gate is yellow.
44
+ sentences:
45
+ - The gate is blue.
46
+ - US spends $50m on carp invasion
47
+ - Suicide bomber strikes in Syria
48
+ pipeline_tag: sentence-similarity
49
+ co2_eq_emissions:
50
+ emissions: 9.73131270828096
51
+ energy_consumed: 0.025035406836808046
52
+ source: codecarbon
53
+ training_type: fine-tuning
54
+ on_cloud: false
55
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
56
+ ram_total_size: 31.777088165283203
57
+ hours_used: 0.122
58
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
59
+ model-index:
60
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: sts dev
67
+ type: sts-dev
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.9105652572605438
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.9097842782963139
74
+ name: Spearman Cosine
75
+ - type: pearson_manhattan
76
+ value: 0.8999692728646553
77
+ name: Pearson Manhattan
78
+ - type: spearman_manhattan
79
+ value: 0.909018931820409
80
+ name: Spearman Manhattan
81
+ - type: pearson_euclidean
82
+ value: 0.9003677259034385
83
+ name: Pearson Euclidean
84
+ - type: spearman_euclidean
85
+ value: 0.9097842782963139
86
+ name: Spearman Euclidean
87
+ - type: pearson_dot
88
+ value: 0.9105652590717077
89
+ name: Pearson Dot
90
+ - type: spearman_dot
91
+ value: 0.9097842782963139
92
+ name: Spearman Dot
93
+ - type: pearson_max
94
+ value: 0.9105652590717077
95
+ name: Pearson Max
96
+ - type: spearman_max
97
+ value: 0.9097842782963139
98
+ name: Spearman Max
99
+ - task:
100
+ type: semantic-similarity
101
+ name: Semantic Similarity
102
+ dataset:
103
+ name: sts test
104
+ type: sts-test
105
+ metrics:
106
+ - type: pearson_cosine
107
+ value: 0.8764756843077764
108
+ name: Pearson Cosine
109
+ - type: spearman_cosine
110
+ value: 0.8733461504859822
111
+ name: Spearman Cosine
112
+ - type: pearson_manhattan
113
+ value: 0.8668031220817161
114
+ name: Pearson Manhattan
115
+ - type: spearman_manhattan
116
+ value: 0.8725075805222068
117
+ name: Spearman Manhattan
118
+ - type: pearson_euclidean
119
+ value: 0.8674774784108314
120
+ name: Pearson Euclidean
121
+ - type: spearman_euclidean
122
+ value: 0.8733464312456004
123
+ name: Spearman Euclidean
124
+ - type: pearson_dot
125
+ value: 0.8764756858675475
126
+ name: Pearson Dot
127
+ - type: spearman_dot
128
+ value: 0.8733464312456004
129
+ name: Spearman Dot
130
+ - type: pearson_max
131
+ value: 0.8764756858675475
132
+ name: Pearson Max
133
+ - type: spearman_max
134
+ value: 0.8733464312456004
135
+ name: Spearman Max
136
+ ---
137
+
138
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
139
+
140
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
141
+
142
+ ## Model Details
143
+
144
+ ### Model Description
145
+ - **Model Type:** Sentence Transformer
146
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
147
+ - **Maximum Sequence Length:** 384 tokens
148
+ - **Output Dimensionality:** 768 tokens
149
+ - **Similarity Function:** Cosine Similarity
150
+ - **Training Dataset:**
151
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
152
+ - **Language:** en
153
+ <!-- - **License:** Unknown -->
154
+
155
+ ### Model Sources
156
+
157
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
158
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
159
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
160
+
161
+ ### Full Model Architecture
162
+
163
+ ```
164
+ SentenceTransformer(
165
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
166
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
167
+ (2): Normalize()
168
+ )
169
+ ```
170
+
171
+ ## Usage
172
+
173
+ ### Direct Usage (Sentence Transformers)
174
+
175
+ First install the Sentence Transformers library:
176
+
177
+ ```bash
178
+ pip install -U sentence-transformers
179
+ ```
180
+
181
+ Then you can load this model and run inference.
182
+ ```python
183
+ from sentence_transformers import SentenceTransformer
184
+
185
+ # Download from the 🤗 Hub
186
+ model = SentenceTransformer("tomaarsen/all-mpnet-base-v2-sts")
187
+ # Run inference
188
+ sentences = [
189
+ 'The gate is yellow.',
190
+ 'The gate is blue.',
191
+ 'US spends $50m on carp invasion',
192
+ ]
193
+ embeddings = model.encode(sentences)
194
+ print(embeddings.shape)
195
+ # [3, 768]
196
+
197
+ # Get the similarity scores for the embeddings
198
+ similarities = model.similarity(embeddings)
199
+ print(similarities.shape)
200
+ # [3, 3]
201
+ ```
202
+
203
+ <!--
204
+ ### Direct Usage (Transformers)
205
+
206
+ <details><summary>Click to see the direct usage in Transformers</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Downstream Usage (Sentence Transformers)
213
+
214
+ You can finetune this model on your own dataset.
215
+
216
+ <details><summary>Click to expand</summary>
217
+
218
+ </details>
219
+ -->
220
+
221
+ <!--
222
+ ### Out-of-Scope Use
223
+
224
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
225
+ -->
226
+
227
+ ## Evaluation
228
+
229
+ ### Metrics
230
+
231
+ #### Semantic Similarity
232
+ * Dataset: `sts-dev`
233
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
234
+
235
+ | Metric | Value |
236
+ |:--------------------|:-----------|
237
+ | pearson_cosine | 0.9106 |
238
+ | **spearman_cosine** | **0.9098** |
239
+ | pearson_manhattan | 0.9 |
240
+ | spearman_manhattan | 0.909 |
241
+ | pearson_euclidean | 0.9004 |
242
+ | spearman_euclidean | 0.9098 |
243
+ | pearson_dot | 0.9106 |
244
+ | spearman_dot | 0.9098 |
245
+ | pearson_max | 0.9106 |
246
+ | spearman_max | 0.9098 |
247
+
248
+ #### Semantic Similarity
249
+ * Dataset: `sts-test`
250
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
251
+
252
+ | Metric | Value |
253
+ |:--------------------|:-----------|
254
+ | pearson_cosine | 0.8765 |
255
+ | **spearman_cosine** | **0.8733** |
256
+ | pearson_manhattan | 0.8668 |
257
+ | spearman_manhattan | 0.8725 |
258
+ | pearson_euclidean | 0.8675 |
259
+ | spearman_euclidean | 0.8733 |
260
+ | pearson_dot | 0.8765 |
261
+ | spearman_dot | 0.8733 |
262
+ | pearson_max | 0.8765 |
263
+ | spearman_max | 0.8733 |
264
+
265
+ <!--
266
+ ## Bias, Risks and Limitations
267
+
268
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
269
+ -->
270
+
271
+ <!--
272
+ ### Recommendations
273
+
274
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
275
+ -->
276
+
277
+ ## Training Details
278
+
279
+ ### Training Dataset
280
+
281
+ #### sentence-transformers/stsb
282
+
283
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
284
+ * Size: 5,749 training samples
285
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
286
+ * Approximate statistics based on the first 1000 samples:
287
+ | | sentence1 | sentence2 | score |
288
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
289
+ | type | string | string | float |
290
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
291
+ * Samples:
292
+ | sentence1 | sentence2 | score |
293
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
294
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
295
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
296
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
297
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
298
+ ```json
299
+ {
300
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
301
+ }
302
+ ```
303
+
304
+ ### Evaluation Dataset
305
+
306
+ #### sentence-transformers/stsb
307
+
308
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
309
+ * Size: 1,500 evaluation samples
310
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
311
+ * Approximate statistics based on the first 1000 samples:
312
+ | | sentence1 | sentence2 | score |
313
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
314
+ | type | string | string | float |
315
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
316
+ * Samples:
317
+ | sentence1 | sentence2 | score |
318
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
319
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
320
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
321
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
322
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
323
+ ```json
324
+ {
325
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
326
+ }
327
+ ```
328
+
329
+ ### Training Hyperparameters
330
+ #### Non-Default Hyperparameters
331
+
332
+ - `eval_strategy`: steps
333
+ - `per_device_train_batch_size`: 16
334
+ - `per_device_eval_batch_size`: 16
335
+ - `num_train_epochs`: 4
336
+ - `warmup_ratio`: 0.1
337
+ - `fp16`: True
338
+
339
+ #### All Hyperparameters
340
+ <details><summary>Click to expand</summary>
341
+
342
+ - `overwrite_output_dir`: False
343
+ - `do_predict`: False
344
+ - `eval_strategy`: steps
345
+ - `prediction_loss_only`: False
346
+ - `per_device_train_batch_size`: 16
347
+ - `per_device_eval_batch_size`: 16
348
+ - `per_gpu_train_batch_size`: None
349
+ - `per_gpu_eval_batch_size`: None
350
+ - `gradient_accumulation_steps`: 1
351
+ - `eval_accumulation_steps`: None
352
+ - `learning_rate`: 5e-05
353
+ - `weight_decay`: 0.0
354
+ - `adam_beta1`: 0.9
355
+ - `adam_beta2`: 0.999
356
+ - `adam_epsilon`: 1e-08
357
+ - `max_grad_norm`: 1.0
358
+ - `num_train_epochs`: 4
359
+ - `max_steps`: -1
360
+ - `lr_scheduler_type`: linear
361
+ - `lr_scheduler_kwargs`: {}
362
+ - `warmup_ratio`: 0.1
363
+ - `warmup_steps`: 0
364
+ - `log_level`: passive
365
+ - `log_level_replica`: warning
366
+ - `log_on_each_node`: True
367
+ - `logging_nan_inf_filter`: True
368
+ - `save_safetensors`: True
369
+ - `save_on_each_node`: False
370
+ - `save_only_model`: False
371
+ - `no_cuda`: False
372
+ - `use_cpu`: False
373
+ - `use_mps_device`: False
374
+ - `seed`: 42
375
+ - `data_seed`: None
376
+ - `jit_mode_eval`: False
377
+ - `use_ipex`: False
378
+ - `bf16`: False
379
+ - `fp16`: True
380
+ - `fp16_opt_level`: O1
381
+ - `half_precision_backend`: auto
382
+ - `bf16_full_eval`: False
383
+ - `fp16_full_eval`: False
384
+ - `tf32`: None
385
+ - `local_rank`: 0
386
+ - `ddp_backend`: None
387
+ - `tpu_num_cores`: None
388
+ - `tpu_metrics_debug`: False
389
+ - `debug`: []
390
+ - `dataloader_drop_last`: False
391
+ - `dataloader_num_workers`: 0
392
+ - `dataloader_prefetch_factor`: None
393
+ - `past_index`: -1
394
+ - `disable_tqdm`: False
395
+ - `remove_unused_columns`: True
396
+ - `label_names`: None
397
+ - `load_best_model_at_end`: False
398
+ - `ignore_data_skip`: False
399
+ - `fsdp`: []
400
+ - `fsdp_min_num_params`: 0
401
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
402
+ - `fsdp_transformer_layer_cls_to_wrap`: None
403
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
404
+ - `deepspeed`: None
405
+ - `label_smoothing_factor`: 0.0
406
+ - `optim`: adamw_torch
407
+ - `optim_args`: None
408
+ - `adafactor`: False
409
+ - `group_by_length`: False
410
+ - `length_column_name`: length
411
+ - `ddp_find_unused_parameters`: None
412
+ - `ddp_bucket_cap_mb`: None
413
+ - `ddp_broadcast_buffers`: None
414
+ - `dataloader_pin_memory`: True
415
+ - `dataloader_persistent_workers`: False
416
+ - `skip_memory_metrics`: True
417
+ - `use_legacy_prediction_loop`: False
418
+ - `push_to_hub`: False
419
+ - `resume_from_checkpoint`: None
420
+ - `hub_model_id`: None
421
+ - `hub_strategy`: every_save
422
+ - `hub_private_repo`: False
423
+ - `hub_always_push`: False
424
+ - `gradient_checkpointing`: False
425
+ - `gradient_checkpointing_kwargs`: None
426
+ - `include_inputs_for_metrics`: False
427
+ - `eval_do_concat_batches`: True
428
+ - `fp16_backend`: auto
429
+ - `push_to_hub_model_id`: None
430
+ - `push_to_hub_organization`: None
431
+ - `mp_parameters`:
432
+ - `auto_find_batch_size`: False
433
+ - `full_determinism`: False
434
+ - `torchdynamo`: None
435
+ - `ray_scope`: last
436
+ - `ddp_timeout`: 1800
437
+ - `torch_compile`: False
438
+ - `torch_compile_backend`: None
439
+ - `torch_compile_mode`: None
440
+ - `dispatch_batches`: None
441
+ - `split_batches`: None
442
+ - `include_tokens_per_second`: False
443
+ - `include_num_input_tokens_seen`: False
444
+ - `neftune_noise_alpha`: None
445
+ - `optim_target_modules`: None
446
+ - `batch_sampler`: batch_sampler
447
+ - `multi_dataset_batch_sampler`: proportional
448
+
449
+ </details>
450
+
451
+ ### Training Logs
452
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
453
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
454
+ | 0.2778 | 100 | 0.0218 | 0.0210 | 0.8939 | - |
455
+ | 0.5556 | 200 | 0.0203 | 0.0190 | 0.8990 | - |
456
+ | 0.8333 | 300 | 0.019 | 0.0183 | 0.9021 | - |
457
+ | 1.1111 | 400 | 0.0147 | 0.0190 | 0.9033 | - |
458
+ | 1.3889 | 500 | 0.0092 | 0.0187 | 0.9038 | - |
459
+ | 1.6667 | 600 | 0.0089 | 0.0180 | 0.9031 | - |
460
+ | 1.9444 | 700 | 0.0089 | 0.0184 | 0.9045 | - |
461
+ | 2.2222 | 800 | 0.0056 | 0.0181 | 0.9066 | - |
462
+ | 2.5 | 900 | 0.0045 | 0.0182 | 0.9075 | - |
463
+ | 2.7778 | 1000 | 0.0047 | 0.0179 | 0.9083 | - |
464
+ | 3.0556 | 1100 | 0.0045 | 0.0179 | 0.9090 | - |
465
+ | 3.3333 | 1200 | 0.003 | 0.0176 | 0.9088 | - |
466
+ | 3.6111 | 1300 | 0.0029 | 0.0176 | 0.9093 | - |
467
+ | 3.8889 | 1400 | 0.0031 | 0.0176 | 0.9098 | - |
468
+ | 4.0 | 1440 | - | - | - | 0.8733 |
469
+
470
+
471
+ ### Environmental Impact
472
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
473
+ - **Energy Consumed**: 0.025 kWh
474
+ - **Carbon Emitted**: 0.010 kg of CO2
475
+ - **Hours Used**: 0.122 hours
476
+
477
+ ### Training Hardware
478
+ - **On Cloud**: No
479
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
480
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
481
+ - **RAM Size**: 31.78 GB
482
+
483
+ ### Framework Versions
484
+ - Python: 3.11.6
485
+ - Sentence Transformers: 3.0.0.dev0
486
+ - Transformers: 4.41.0.dev0
487
+ - PyTorch: 2.3.0+cu121
488
+ - Accelerate: 0.26.1
489
+ - Datasets: 2.18.0
490
+ - Tokenizers: 0.19.1
491
+
492
+ ## Citation
493
+
494
+ ### BibTeX
495
+
496
+ #### Sentence Transformers
497
+ ```bibtex
498
+ @inproceedings{reimers-2019-sentence-bert,
499
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
500
+ author = "Reimers, Nils and Gurevych, Iryna",
501
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
502
+ month = "11",
503
+ year = "2019",
504
+ publisher = "Association for Computational Linguistics",
505
+ url = "https://arxiv.org/abs/1908.10084",
506
+ }
507
+ ```
508
+
509
+ <!--
510
+ ## Glossary
511
+
512
+ *Clearly define terms in order to be accessible across audiences.*
513
+ -->
514
+
515
+ <!--
516
+ ## Model Card Authors
517
+
518
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
519
+ -->
520
+
521
+ <!--
522
+ ## Model Card Contact
523
+
524
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
525
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.0.dev0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea114494260fb9ccc5d378946e1589f1810b8519c5ec70d7044aca9c0009bea7
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff