---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Certainly.
sentences:
- '''Of course.'''
- The idea is a good one.
- the woman is asleep at home
- source_sentence: He walked.
sentences:
- The man was walking.
- The people are running.
- The women are making pizza.
- source_sentence: Double pig.
sentences:
- Ah, triple pig!
- He had no real answer.
- Do you not know?
- source_sentence: Very simply.
sentences:
- Not complicatedly.
- People are on a beach.
- The man kicks the umpire.
- source_sentence: Introduction
sentences:
- Analytical Perspectives.
- A man reads the paper.
- No one wanted Singapore.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 94.69690706493431
energy_consumed: 0.24362341090329948
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.849
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.845554152020916
name: Pearson Cosine
- type: spearman_cosine
value: 0.8486455482928023
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8475103134032791
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8505660318245544
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8494883021932786
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8526835635349959
name: Spearman Euclidean
- type: pearson_dot
value: 0.7866563719943611
name: Pearson Dot
- type: spearman_dot
value: 0.7816258810453734
name: Spearman Dot
- type: pearson_max
value: 0.8494883021932786
name: Pearson Max
- type: spearman_max
value: 0.8526835635349959
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8182808182081737
name: Pearson Cosine
- type: spearman_cosine
value: 0.8148039503538166
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8132463174874629
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8088248622918064
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8148200486691981
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8105059611031759
name: Spearman Euclidean
- type: pearson_dot
value: 0.7499699563291125
name: Pearson Dot
- type: spearman_dot
value: 0.7350068244681712
name: Spearman Dot
- type: pearson_max
value: 0.8182808182081737
name: Pearson Max
- type: spearman_max
value: 0.8148039503538166
name: Spearman Max
---
# SentenceTransformer based on distilbert/distilroberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-adaptive-layer")
# Run inference
sentences = [
'Introduction',
'Analytical Perspectives.',
'A man reads the paper.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8456 |
| **spearman_cosine** | **0.8486** |
| pearson_manhattan | 0.8475 |
| spearman_manhattan | 0.8506 |
| pearson_euclidean | 0.8495 |
| spearman_euclidean | 0.8527 |
| pearson_dot | 0.7867 |
| spearman_dot | 0.7816 |
| pearson_max | 0.8495 |
| spearman_max | 0.8527 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8183 |
| **spearman_cosine** | **0.8148** |
| pearson_manhattan | 0.8132 |
| spearman_manhattan | 0.8088 |
| pearson_euclidean | 0.8148 |
| spearman_euclidean | 0.8105 |
| pearson_dot | 0.75 |
| spearman_dot | 0.735 |
| pearson_max | 0.8183 |
| spearman_max | 0.8148 |
## Training Details
### Training Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [e587f0c](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/e587f0c494c20fb9a1853cdfb43d42576d60a7e5)
* Size: 557,850 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| A person is at a diner, ordering an omelette.
|
| Children smiling and waving at camera
| There are children present
| The kids are frowning
|
| A boy is jumping on skateboard in the middle of a red bridge.
| The boy does a skateboarding trick.
| The boy skates down the sidewalk.
|
* Loss: [AdaptiveLayerLoss
](https://sbert.net/docs/package_reference/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3
}
```
### Evaluation Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [e587f0c](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/e587f0c494c20fb9a1853cdfb43d42576d60a7e5)
* Size: 6,584 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Two women are embracing while holding to go packages.
| Two woman are holding packages.
| The men are fighting outside a deli.
|
| Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
| Two kids in numbered jerseys wash their hands.
| Two kids in jackets walk to school.
|
| A man selling donuts to a customer during a world exhibition event held in the city of Angeles
| A man selling donuts to a customer.
| A woman drinks her coffee in a small cafe.
|
* Loss: [AdaptiveLayerLoss
](https://sbert.net/docs/package_reference/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters