tomaarsen HF staff commited on
Commit
2f1b515
1 Parent(s): 201cd17

Add new SentenceTransformer model.

Browse files
0_WordEmbeddings/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57ae7e7c7ecc9d18987bac8c73da82d327ea4dc8c01aed9be40570c64b632ccc
3
+ size 480002490
0_WordEmbeddings/whitespacetokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
0_WordEmbeddings/wordembedding_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "sentence_transformers.models.tokenizer.WhitespaceTokenizer.WhitespaceTokenizer",
3
+ "update_embeddings": false,
4
+ "max_seq_length": 1000000
5
+ }
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 300,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 300, "out_features": 300, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c550c3f8b94d36fcd54e19d0931244d04bea032036716820895cc0d68d92e44
3
+ size 362812
3_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 300, "out_features": 300, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
3_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb3dd43b4c8be1d9e80a50c0dc252afe19c550c7d19088625810d52972636227
3
+ size 362812
README.md ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:CosineSimilarityLoss
10
+ metrics:
11
+ - pearson_cosine
12
+ - spearman_cosine
13
+ - pearson_manhattan
14
+ - spearman_manhattan
15
+ - pearson_euclidean
16
+ - spearman_euclidean
17
+ - pearson_dot
18
+ - spearman_dot
19
+ - pearson_max
20
+ - spearman_max
21
+ widget:
22
+ - source_sentence: Women are running.
23
+ sentences:
24
+ - Women are running.
25
+ - The cougar is chasing the bear.
26
+ - NATO soldier killed in Afghan attack
27
+ - source_sentence: A woman is reading.
28
+ sentences:
29
+ - A woman is writing something.
30
+ - A person is drawing a picture.
31
+ - A dog laying in the snow.
32
+ - source_sentence: A plane in the sky.
33
+ sentences:
34
+ - Two airplanes in the sky.
35
+ - A man is playing an instrument.
36
+ - Bangladesh executes opposition leader
37
+ - source_sentence: A man jumping rope
38
+ sentences:
39
+ - A man is climbing a rope.
40
+ - The girl is playing the guitar.
41
+ - A chef prepared a meal.
42
+ - source_sentence: A baby is laughing.
43
+ sentences:
44
+ - The baby laughed in his car seat.
45
+ - A person is combing a cat hair.
46
+ - A man is riding a horse in the desert.
47
+ pipeline_tag: sentence-similarity
48
+ co2_eq_emissions:
49
+ emissions: 0.04787408159843385
50
+ energy_consumed: 0.00012316397033828962
51
+ source: codecarbon
52
+ training_type: fine-tuning
53
+ on_cloud: false
54
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
55
+ ram_total_size: 31.777088165283203
56
+ hours_used: 0.002
57
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
58
+ model-index:
59
+ - name: SentenceTransformer
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: sts dev
66
+ type: sts-dev
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.7683803418925228
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.7632727671822109
73
+ name: Spearman Cosine
74
+ - type: pearson_manhattan
75
+ value: 0.7167343000545916
76
+ name: Pearson Manhattan
77
+ - type: spearman_manhattan
78
+ value: 0.7284225373129679
79
+ name: Spearman Manhattan
80
+ - type: pearson_euclidean
81
+ value: 0.7177127625426643
82
+ name: Pearson Euclidean
83
+ - type: spearman_euclidean
84
+ value: 0.729676171689153
85
+ name: Spearman Euclidean
86
+ - type: pearson_dot
87
+ value: 0.561565806742925
88
+ name: Pearson Dot
89
+ - type: spearman_dot
90
+ value: 0.6116263753232491
91
+ name: Spearman Dot
92
+ - type: pearson_max
93
+ value: 0.7683803418925228
94
+ name: Pearson Max
95
+ - type: spearman_max
96
+ value: 0.7632727671822109
97
+ name: Spearman Max
98
+ - task:
99
+ type: semantic-similarity
100
+ name: Semantic Similarity
101
+ dataset:
102
+ name: sts test
103
+ type: sts-test
104
+ metrics:
105
+ - type: pearson_cosine
106
+ value: 0.6783055201030597
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.6549170846046467
110
+ name: Spearman Cosine
111
+ - type: pearson_manhattan
112
+ value: 0.6064971288495867
113
+ name: Pearson Manhattan
114
+ - type: spearman_manhattan
115
+ value: 0.6169187673598634
116
+ name: Spearman Manhattan
117
+ - type: pearson_euclidean
118
+ value: 0.6073075425801093
119
+ name: Pearson Euclidean
120
+ - type: spearman_euclidean
121
+ value: 0.6178537671183167
122
+ name: Spearman Euclidean
123
+ - type: pearson_dot
124
+ value: 0.45009881124802237
125
+ name: Pearson Dot
126
+ - type: spearman_dot
127
+ value: 0.47227603379856636
128
+ name: Spearman Dot
129
+ - type: pearson_max
130
+ value: 0.6783055201030597
131
+ name: Pearson Max
132
+ - type: spearman_max
133
+ value: 0.6549170846046467
134
+ name: Spearman Max
135
+ ---
136
+
137
+ # SentenceTransformer
138
+
139
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 300-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
140
+
141
+ ## Model Details
142
+
143
+ ### Model Description
144
+ - **Model Type:** Sentence Transformer
145
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
146
+ - **Maximum Sequence Length:** 1000000 tokens
147
+ - **Output Dimensionality:** 300 tokens
148
+ - **Similarity Function:** Cosine Similarity
149
+ - **Training Dataset:**
150
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
151
+ - **Language:** en
152
+ <!-- - **License:** Unknown -->
153
+
154
+ ### Model Sources
155
+
156
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
157
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
158
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
159
+
160
+ ### Full Model Architecture
161
+
162
+ ```
163
+ SentenceTransformer(
164
+ (0): WordEmbeddings(
165
+ (emb_layer): Embedding(400001, 300)
166
+ )
167
+ (1): Pooling({'word_embedding_dimension': 300, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
168
+ (2): Dense({'in_features': 300, 'out_features': 300, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
169
+ (3): Dense({'in_features': 300, 'out_features': 300, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
170
+ )
171
+ ```
172
+
173
+ ## Usage
174
+
175
+ ### Direct Usage (Sentence Transformers)
176
+
177
+ First install the Sentence Transformers library:
178
+
179
+ ```bash
180
+ pip install -U sentence-transformers
181
+ ```
182
+
183
+ Then you can load this model and run inference.
184
+ ```python
185
+ from sentence_transformers import SentenceTransformer
186
+
187
+ # Download from the 🤗 Hub
188
+ model = SentenceTransformer("tomaarsen/glove-mean-pooling-sts")
189
+ # Run inference
190
+ sentences = [
191
+ 'A baby is laughing.',
192
+ 'The baby laughed in his car seat.',
193
+ 'A person is combing a cat hair.',
194
+ ]
195
+ embeddings = model.encode(sentences)
196
+ print(embeddings.shape)
197
+ # [3, 300]
198
+
199
+ # Get the similarity scores for the embeddings
200
+ similarities = model.similarity(embeddings)
201
+ print(similarities.shape)
202
+ # [3, 3]
203
+ ```
204
+
205
+ <!--
206
+ ### Direct Usage (Transformers)
207
+
208
+ <details><summary>Click to see the direct usage in Transformers</summary>
209
+
210
+ </details>
211
+ -->
212
+
213
+ <!--
214
+ ### Downstream Usage (Sentence Transformers)
215
+
216
+ You can finetune this model on your own dataset.
217
+
218
+ <details><summary>Click to expand</summary>
219
+
220
+ </details>
221
+ -->
222
+
223
+ <!--
224
+ ### Out-of-Scope Use
225
+
226
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
227
+ -->
228
+
229
+ ## Evaluation
230
+
231
+ ### Metrics
232
+
233
+ #### Semantic Similarity
234
+ * Dataset: `sts-dev`
235
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
236
+
237
+ | Metric | Value |
238
+ |:--------------------|:-----------|
239
+ | pearson_cosine | 0.7684 |
240
+ | **spearman_cosine** | **0.7633** |
241
+ | pearson_manhattan | 0.7167 |
242
+ | spearman_manhattan | 0.7284 |
243
+ | pearson_euclidean | 0.7177 |
244
+ | spearman_euclidean | 0.7297 |
245
+ | pearson_dot | 0.5616 |
246
+ | spearman_dot | 0.6116 |
247
+ | pearson_max | 0.7684 |
248
+ | spearman_max | 0.7633 |
249
+
250
+ #### Semantic Similarity
251
+ * Dataset: `sts-test`
252
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
253
+
254
+ | Metric | Value |
255
+ |:--------------------|:-----------|
256
+ | pearson_cosine | 0.6783 |
257
+ | **spearman_cosine** | **0.6549** |
258
+ | pearson_manhattan | 0.6065 |
259
+ | spearman_manhattan | 0.6169 |
260
+ | pearson_euclidean | 0.6073 |
261
+ | spearman_euclidean | 0.6179 |
262
+ | pearson_dot | 0.4501 |
263
+ | spearman_dot | 0.4723 |
264
+ | pearson_max | 0.6783 |
265
+ | spearman_max | 0.6549 |
266
+
267
+ <!--
268
+ ## Bias, Risks and Limitations
269
+
270
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
271
+ -->
272
+
273
+ <!--
274
+ ### Recommendations
275
+
276
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
277
+ -->
278
+
279
+ ## Training Details
280
+
281
+ ### Training Dataset
282
+
283
+ #### sentence-transformers/stsb
284
+
285
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [d999f12](https://huggingface.co/datasets/sentence-transformers/stsb/tree/d999f12281623b0925506817d9bd85e88289218a)
286
+ * Size: 5,749 training samples
287
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
288
+ * Approximate statistics based on the first 1000 samples:
289
+ | | sentence1 | sentence2 | score |
290
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
291
+ | type | string | string | float |
292
+ | details | <ul><li>min: 1 tokens</li><li>mean: 3.38 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 3.39 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
293
+ * Samples:
294
+ | sentence1 | sentence2 | score |
295
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
296
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
297
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
298
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
299
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
300
+ ```json
301
+ {
302
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
303
+ }
304
+ ```
305
+
306
+ ### Evaluation Dataset
307
+
308
+ #### sentence-transformers/stsb
309
+
310
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [d999f12](https://huggingface.co/datasets/sentence-transformers/stsb/tree/d999f12281623b0925506817d9bd85e88289218a)
311
+ * Size: 1,500 evaluation samples
312
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
313
+ * Approximate statistics based on the first 1000 samples:
314
+ | | sentence1 | sentence2 | score |
315
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
316
+ | type | string | string | float |
317
+ | details | <ul><li>min: 1 tokens</li><li>mean: 5.17 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 5.08 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
318
+ * Samples:
319
+ | sentence1 | sentence2 | score |
320
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
321
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
322
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
323
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
324
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
325
+ ```json
326
+ {
327
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
328
+ }
329
+ ```
330
+
331
+ ### Training Hyperparameters
332
+ #### Non-Default Hyperparameters
333
+
334
+ - `eval_strategy`: steps
335
+ - `per_device_train_batch_size`: 32
336
+ - `per_device_eval_batch_size`: 32
337
+ - `num_train_epochs`: 1
338
+ - `warmup_ratio`: 0.1
339
+ - `fp16`: True
340
+
341
+ #### All Hyperparameters
342
+ <details><summary>Click to expand</summary>
343
+
344
+ - `overwrite_output_dir`: False
345
+ - `do_predict`: False
346
+ - `eval_strategy`: steps
347
+ - `prediction_loss_only`: False
348
+ - `per_device_train_batch_size`: 32
349
+ - `per_device_eval_batch_size`: 32
350
+ - `per_gpu_train_batch_size`: None
351
+ - `per_gpu_eval_batch_size`: None
352
+ - `gradient_accumulation_steps`: 1
353
+ - `eval_accumulation_steps`: None
354
+ - `learning_rate`: 5e-05
355
+ - `weight_decay`: 0.0
356
+ - `adam_beta1`: 0.9
357
+ - `adam_beta2`: 0.999
358
+ - `adam_epsilon`: 1e-08
359
+ - `max_grad_norm`: 1.0
360
+ - `num_train_epochs`: 1
361
+ - `max_steps`: -1
362
+ - `lr_scheduler_type`: linear
363
+ - `lr_scheduler_kwargs`: {}
364
+ - `warmup_ratio`: 0.1
365
+ - `warmup_steps`: 0
366
+ - `log_level`: passive
367
+ - `log_level_replica`: warning
368
+ - `log_on_each_node`: True
369
+ - `logging_nan_inf_filter`: True
370
+ - `save_safetensors`: True
371
+ - `save_on_each_node`: False
372
+ - `save_only_model`: False
373
+ - `no_cuda`: False
374
+ - `use_cpu`: False
375
+ - `use_mps_device`: False
376
+ - `seed`: 42
377
+ - `data_seed`: None
378
+ - `jit_mode_eval`: False
379
+ - `use_ipex`: False
380
+ - `bf16`: False
381
+ - `fp16`: True
382
+ - `fp16_opt_level`: O1
383
+ - `half_precision_backend`: auto
384
+ - `bf16_full_eval`: False
385
+ - `fp16_full_eval`: False
386
+ - `tf32`: None
387
+ - `local_rank`: 0
388
+ - `ddp_backend`: None
389
+ - `tpu_num_cores`: None
390
+ - `tpu_metrics_debug`: False
391
+ - `debug`: []
392
+ - `dataloader_drop_last`: False
393
+ - `dataloader_num_workers`: 0
394
+ - `dataloader_prefetch_factor`: None
395
+ - `past_index`: -1
396
+ - `disable_tqdm`: False
397
+ - `remove_unused_columns`: True
398
+ - `label_names`: None
399
+ - `load_best_model_at_end`: False
400
+ - `ignore_data_skip`: False
401
+ - `fsdp`: []
402
+ - `fsdp_min_num_params`: 0
403
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
404
+ - `fsdp_transformer_layer_cls_to_wrap`: None
405
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
406
+ - `deepspeed`: None
407
+ - `label_smoothing_factor`: 0.0
408
+ - `optim`: adamw_torch
409
+ - `optim_args`: None
410
+ - `adafactor`: False
411
+ - `group_by_length`: False
412
+ - `length_column_name`: length
413
+ - `ddp_find_unused_parameters`: None
414
+ - `ddp_bucket_cap_mb`: None
415
+ - `ddp_broadcast_buffers`: None
416
+ - `dataloader_pin_memory`: True
417
+ - `dataloader_persistent_workers`: False
418
+ - `skip_memory_metrics`: True
419
+ - `use_legacy_prediction_loop`: False
420
+ - `push_to_hub`: False
421
+ - `resume_from_checkpoint`: None
422
+ - `hub_model_id`: None
423
+ - `hub_strategy`: every_save
424
+ - `hub_private_repo`: False
425
+ - `hub_always_push`: False
426
+ - `gradient_checkpointing`: False
427
+ - `gradient_checkpointing_kwargs`: None
428
+ - `include_inputs_for_metrics`: False
429
+ - `eval_do_concat_batches`: True
430
+ - `fp16_backend`: auto
431
+ - `push_to_hub_model_id`: None
432
+ - `push_to_hub_organization`: None
433
+ - `mp_parameters`:
434
+ - `auto_find_batch_size`: False
435
+ - `full_determinism`: False
436
+ - `torchdynamo`: None
437
+ - `ray_scope`: last
438
+ - `ddp_timeout`: 1800
439
+ - `torch_compile`: False
440
+ - `torch_compile_backend`: None
441
+ - `torch_compile_mode`: None
442
+ - `dispatch_batches`: None
443
+ - `split_batches`: None
444
+ - `include_tokens_per_second`: False
445
+ - `include_num_input_tokens_seen`: False
446
+ - `neftune_noise_alpha`: None
447
+ - `optim_target_modules`: None
448
+ - `batch_sampler`: batch_sampler
449
+ - `multi_dataset_batch_sampler`: proportional
450
+
451
+ </details>
452
+
453
+ ### Training Logs
454
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
455
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
456
+ | 0.5556 | 100 | 0.0908 | 0.0577 | 0.7633 | - |
457
+ | 1.0 | 180 | - | - | - | 0.6549 |
458
+
459
+
460
+ ### Environmental Impact
461
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
462
+ - **Energy Consumed**: 0.000 kWh
463
+ - **Carbon Emitted**: 0.000 kg of CO2
464
+ - **Hours Used**: 0.002 hours
465
+
466
+ ### Training Hardware
467
+ - **On Cloud**: No
468
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
469
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
470
+ - **RAM Size**: 31.78 GB
471
+
472
+ ### Framework Versions
473
+ - Python: 3.11.6
474
+ - Sentence Transformers: 3.0.0.dev0
475
+ - Transformers: 4.41.0.dev0
476
+ - PyTorch: 2.3.0+cu121
477
+ - Accelerate: 0.26.1
478
+ - Datasets: 2.18.0
479
+ - Tokenizers: 0.19.1
480
+
481
+ ## Citation
482
+
483
+ ### BibTeX
484
+
485
+ #### Sentence Transformers
486
+ ```bibtex
487
+ @inproceedings{reimers-2019-sentence-bert,
488
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
489
+ author = "Reimers, Nils and Gurevych, Iryna",
490
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
491
+ month = "11",
492
+ year = "2019",
493
+ publisher = "Association for Computational Linguistics",
494
+ url = "https://arxiv.org/abs/1908.10084",
495
+ }
496
+ ```
497
+
498
+ <!--
499
+ ## Glossary
500
+
501
+ *Clearly define terms in order to be accessible across audiences.*
502
+ -->
503
+
504
+ <!--
505
+ ## Model Card Authors
506
+
507
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
508
+ -->
509
+
510
+ <!--
511
+ ## Model Card Contact
512
+
513
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
514
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_WordEmbeddings",
6
+ "type": "sentence_transformers.models.WordEmbeddings"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Dense",
24
+ "type": "sentence_transformers.models.Dense"
25
+ }
26
+ ]