--- language: - en license: apache-2.0 library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - sst2 metrics: - precision - recall - f1 widget: - text: 'this is a story of two misfits who do n''t stand a chance alone , but together they are magnificent . ' - text: 'it does n''t believe in itself , it has no sense of humor ... it ''s just plain bored . ' - text: 'the band ''s courage in the face of official repression is inspiring , especially for aging hippies ( this one included ) . ' - text: 'a fast , funny , highly enjoyable movie . ' - text: 'the movie achieves as great an impact by keeping these thoughts hidden as ... ( quills ) did by showing them . ' pipeline_tag: text-classification co2_eq_emissions: emissions: 2.5933709269110308 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.027 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2 results: - task: type: text-classification name: Text Classification dataset: name: sst2 type: sst2 split: test metrics: - type: accuracy value: 0.8588082901554405 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [sst2](https://huggingface.co/datasets/sst2) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. For classification, it uses a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance. - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [sst2](https://huggingface.co/datasets/sst2) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative |