tomaarsen HF staff commited on
Commit
cba2bec
1 Parent(s): ffd8a89

Update metadata for new model weights

Browse files
Files changed (1) hide show
  1. README.md +37 -5
README.md CHANGED
@@ -3,11 +3,43 @@
3
  license: apache-2.0
4
  library_name: span-marker
5
  tags:
6
- - span-marker
7
- - token-classification
8
- - ner
9
- - named-entity-recognition
10
  pipeline_tag: token-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  # SpanMarker for Named Entity Recognition
@@ -28,7 +60,7 @@ You can then run inference with this model like so:
28
  from span_marker import SpanMarkerModel
29
 
30
  # Download from the 🤗 Hub
31
- model = SpanMarkerModel.from_pretrained("span_marker_model_name")
32
  # Run inference
33
  entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
34
  ```
 
3
  license: apache-2.0
4
  library_name: span-marker
5
  tags:
6
+ - span-marker
7
+ - token-classification
8
+ - ner
9
+ - named-entity-recognition
10
  pipeline_tag: token-classification
11
+ model-index:
12
+ - name: >-
13
+ SpanMarker w. bert-base-cased on coarsegrained, supervised FewNERD by Tom
14
+ Aarsen
15
+ results:
16
+ - task:
17
+ type: token-classification
18
+ name: Named Entity Recognition
19
+ dataset:
20
+ type: DFKI-SLT/few-nerd
21
+ name: coarsegrained, supervised FewNERD
22
+ config: supervised
23
+ split: test
24
+ revision: 2e3e727c63604fbfa2ff4cc5055359c84fe5ef2c
25
+ metrics:
26
+ - type: f1
27
+ value: 0.7081
28
+ name: F1
29
+ - type: precision
30
+ value: 0.7378
31
+ name: Precision
32
+ - type: recall
33
+ value: 0.6808
34
+ name: Recall
35
+ datasets:
36
+ - DFKI-SLT/few-nerd
37
+ language:
38
+ - en
39
+ metrics:
40
+ - f1
41
+ - recall
42
+ - precision
43
  ---
44
 
45
  # SpanMarker for Named Entity Recognition
 
60
  from span_marker import SpanMarkerModel
61
 
62
  # Download from the 🤗 Hub
63
+ model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-tiny-fewnerd-coarse-super")
64
  # Run inference
65
  entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
66
  ```