File size: 3,942 Bytes
13f4da1 edcd145 13f4da1 edcd145 13f4da1 b2bb91b 13f4da1 edcd145 13f4da1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
pipeline_tag: token-classification
widget:
- text: "Amelia Earthart voló su Lockheed Vega 5B monomotor a través del Océano Atlántico hasta París ."
example_title: "Spanish"
- text: "Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris ."
example_title: "English"
- text: "Amelia Earthart a fait voler son monomoteur Lockheed Vega 5B à travers l'ocean Atlantique jusqu'à Paris ."
example_title: "French"
- text: "Amelia Earthart flog mit ihrer einmotorigen Lockheed Vega 5B über den Atlantik nach Paris ."
example_title: "German"
- text: "Амелия Эртхарт перелетела на своем одномоторном самолете Lockheed Vega 5B через Атлантический океан в Париж ."
example_title: "Russian"
- text: "Amelia Earthart vloog met haar één-motorige Lockheed Vega 5B over de Atlantische Oceaan naar Parijs ."
example_title: "Dutch"
- text: "Amelia Earthart przeleciała swoim jednosilnikowym samolotem Lockheed Vega 5B przez Ocean Atlantycki do Paryża ."
example_title: "Polish"
- text: "Amelia Earthart flaug eins hreyfils Lockheed Vega 5B yfir Atlantshafið til Parísar ."
example_title: "Icelandic"
- text: "Η Amelia Earthart πέταξε το μονοκινητήριο Lockheed Vega 5B της πέρα από τον Ατλαντικό Ωκεανό στο Παρίσι ."
example_title: "Greek"
model-index:
- name: SpanMarker w. xlm-roberta-base on MultiNERD by Tom Aarsen
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
type: Babelscape/multinerd
name: MultiNERD
split: test
revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
metrics:
- type: f1
value: 0.91314
name: F1
- type: precision
value: 0.91994
name: Precision
- type: recall
value: 0.90643
name: Recall
datasets:
- Babelscape/multinerd
language:
- multilingual
metrics:
- f1
- recall
- precision
---
# SpanMarker for Named Entity Recognition
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder. See [train.py](train.py) for the training script.
## Metrics
| **Language** | **F1** | **Precision** | **Recall** |
|--------------|--------|---------------|------------|
| all | 91.31 | 91.99 | 90.64 |
| **de** | 93.77 | 93.56 | 93.87 |
| **en** | 94.55 | 94.01 | 95.10 |
| **es** | 90.82 | 92.58 | 89.13 |
| **fr** | 90.90 | 93.23 | 88.68 |
| **it** | 93.40 | 90.23 | 92.60 |
| **nl** | 92.47 | 93.61 | 91.36 |
| **pl** | 91.66 | 92.51 | 90.81 |
| **pt** | 91.73 | 93.29 | 90.22 |
| **ru** | 92.64 | 92.37 | 92.91 |
| **zh** | 82.38 | 83.23 | 81.55 |
## Usage
To use this model for inference, first install the `span_marker` library:
```bash
pip install span_marker
```
You can then run inference with this model like so:
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-multinerd")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library. |