Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +793 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- loss:OnlineContrastiveLoss
|
10 |
+
base_model: sentence-transformers/stsb-distilbert-base
|
11 |
+
metrics:
|
12 |
+
- cosine_accuracy
|
13 |
+
- cosine_accuracy_threshold
|
14 |
+
- cosine_f1
|
15 |
+
- cosine_f1_threshold
|
16 |
+
- cosine_precision
|
17 |
+
- cosine_recall
|
18 |
+
- cosine_ap
|
19 |
+
- dot_accuracy
|
20 |
+
- dot_accuracy_threshold
|
21 |
+
- dot_f1
|
22 |
+
- dot_f1_threshold
|
23 |
+
- dot_precision
|
24 |
+
- dot_recall
|
25 |
+
- dot_ap
|
26 |
+
- manhattan_accuracy
|
27 |
+
- manhattan_accuracy_threshold
|
28 |
+
- manhattan_f1
|
29 |
+
- manhattan_f1_threshold
|
30 |
+
- manhattan_precision
|
31 |
+
- manhattan_recall
|
32 |
+
- manhattan_ap
|
33 |
+
- euclidean_accuracy
|
34 |
+
- euclidean_accuracy_threshold
|
35 |
+
- euclidean_f1
|
36 |
+
- euclidean_f1_threshold
|
37 |
+
- euclidean_precision
|
38 |
+
- euclidean_recall
|
39 |
+
- euclidean_ap
|
40 |
+
- max_accuracy
|
41 |
+
- max_accuracy_threshold
|
42 |
+
- max_f1
|
43 |
+
- max_f1_threshold
|
44 |
+
- max_precision
|
45 |
+
- max_recall
|
46 |
+
- max_ap
|
47 |
+
- average_precision
|
48 |
+
- f1
|
49 |
+
- precision
|
50 |
+
- recall
|
51 |
+
- threshold
|
52 |
+
- cosine_accuracy@1
|
53 |
+
- cosine_accuracy@3
|
54 |
+
- cosine_accuracy@5
|
55 |
+
- cosine_accuracy@10
|
56 |
+
- cosine_precision@1
|
57 |
+
- cosine_precision@3
|
58 |
+
- cosine_precision@5
|
59 |
+
- cosine_precision@10
|
60 |
+
- cosine_recall@1
|
61 |
+
- cosine_recall@3
|
62 |
+
- cosine_recall@5
|
63 |
+
- cosine_recall@10
|
64 |
+
- cosine_ndcg@10
|
65 |
+
- cosine_mrr@10
|
66 |
+
- cosine_map@100
|
67 |
+
- dot_accuracy@1
|
68 |
+
- dot_accuracy@3
|
69 |
+
- dot_accuracy@5
|
70 |
+
- dot_accuracy@10
|
71 |
+
- dot_precision@1
|
72 |
+
- dot_precision@3
|
73 |
+
- dot_precision@5
|
74 |
+
- dot_precision@10
|
75 |
+
- dot_recall@1
|
76 |
+
- dot_recall@3
|
77 |
+
- dot_recall@5
|
78 |
+
- dot_recall@10
|
79 |
+
- dot_ndcg@10
|
80 |
+
- dot_mrr@10
|
81 |
+
- dot_map@100
|
82 |
+
widget:
|
83 |
+
- source_sentence: Why did he go MIA?
|
84 |
+
sentences:
|
85 |
+
- Why did Yahoo kill Konfabulator?
|
86 |
+
- Why do people get angry with me?
|
87 |
+
- What are the best waterproof guns?
|
88 |
+
- source_sentence: Who is a soulmate?
|
89 |
+
sentences:
|
90 |
+
- Is she the “One”?
|
91 |
+
- Who is Pakistan's biggest enemy?
|
92 |
+
- Will smoking weed help with my anxiety?
|
93 |
+
- source_sentence: Is this poem good?
|
94 |
+
sentences:
|
95 |
+
- Is my poem any good?
|
96 |
+
- How can I become a good speaker?
|
97 |
+
- What is feminism?
|
98 |
+
- source_sentence: Who invented Yoga?
|
99 |
+
sentences:
|
100 |
+
- How was yoga invented?
|
101 |
+
- Who owns this number 3152150252?
|
102 |
+
- What is Dynamics CRM Services?
|
103 |
+
- source_sentence: Is stretching bad?
|
104 |
+
sentences:
|
105 |
+
- Is stretching good for you?
|
106 |
+
- If i=0; what will i=i++ do to i?
|
107 |
+
- What is the Output of this C program ?
|
108 |
+
pipeline_tag: sentence-similarity
|
109 |
+
co2_eq_emissions:
|
110 |
+
emissions: 15.707175691967695
|
111 |
+
energy_consumed: 0.040409299905757354
|
112 |
+
source: codecarbon
|
113 |
+
training_type: fine-tuning
|
114 |
+
on_cloud: false
|
115 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
116 |
+
ram_total_size: 31.777088165283203
|
117 |
+
hours_used: 0.202
|
118 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
119 |
+
model-index:
|
120 |
+
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
|
121 |
+
results:
|
122 |
+
- task:
|
123 |
+
type: binary-classification
|
124 |
+
name: Binary Classification
|
125 |
+
dataset:
|
126 |
+
name: quora duplicates
|
127 |
+
type: quora-duplicates
|
128 |
+
metrics:
|
129 |
+
- type: cosine_accuracy
|
130 |
+
value: 0.86
|
131 |
+
name: Cosine Accuracy
|
132 |
+
- type: cosine_accuracy_threshold
|
133 |
+
value: 0.8104104995727539
|
134 |
+
name: Cosine Accuracy Threshold
|
135 |
+
- type: cosine_f1
|
136 |
+
value: 0.8250591016548463
|
137 |
+
name: Cosine F1
|
138 |
+
- type: cosine_f1_threshold
|
139 |
+
value: 0.7247534394264221
|
140 |
+
name: Cosine F1 Threshold
|
141 |
+
- type: cosine_precision
|
142 |
+
value: 0.7347368421052631
|
143 |
+
name: Cosine Precision
|
144 |
+
- type: cosine_recall
|
145 |
+
value: 0.9407008086253369
|
146 |
+
name: Cosine Recall
|
147 |
+
- type: cosine_ap
|
148 |
+
value: 0.887247904332921
|
149 |
+
name: Cosine Ap
|
150 |
+
- type: dot_accuracy
|
151 |
+
value: 0.828
|
152 |
+
name: Dot Accuracy
|
153 |
+
- type: dot_accuracy_threshold
|
154 |
+
value: 157.35491943359375
|
155 |
+
name: Dot Accuracy Threshold
|
156 |
+
- type: dot_f1
|
157 |
+
value: 0.7898550724637681
|
158 |
+
name: Dot F1
|
159 |
+
- type: dot_f1_threshold
|
160 |
+
value: 145.7113037109375
|
161 |
+
name: Dot F1 Threshold
|
162 |
+
- type: dot_precision
|
163 |
+
value: 0.7155361050328227
|
164 |
+
name: Dot Precision
|
165 |
+
- type: dot_recall
|
166 |
+
value: 0.8814016172506739
|
167 |
+
name: Dot Recall
|
168 |
+
- type: dot_ap
|
169 |
+
value: 0.8369433397850002
|
170 |
+
name: Dot Ap
|
171 |
+
- type: manhattan_accuracy
|
172 |
+
value: 0.868
|
173 |
+
name: Manhattan Accuracy
|
174 |
+
- type: manhattan_accuracy_threshold
|
175 |
+
value: 208.00347900390625
|
176 |
+
name: Manhattan Accuracy Threshold
|
177 |
+
- type: manhattan_f1
|
178 |
+
value: 0.8307692307692308
|
179 |
+
name: Manhattan F1
|
180 |
+
- type: manhattan_f1_threshold
|
181 |
+
value: 208.00347900390625
|
182 |
+
name: Manhattan F1 Threshold
|
183 |
+
- type: manhattan_precision
|
184 |
+
value: 0.7921760391198044
|
185 |
+
name: Manhattan Precision
|
186 |
+
- type: manhattan_recall
|
187 |
+
value: 0.8733153638814016
|
188 |
+
name: Manhattan Recall
|
189 |
+
- type: manhattan_ap
|
190 |
+
value: 0.8868217413983182
|
191 |
+
name: Manhattan Ap
|
192 |
+
- type: euclidean_accuracy
|
193 |
+
value: 0.867
|
194 |
+
name: Euclidean Accuracy
|
195 |
+
- type: euclidean_accuracy_threshold
|
196 |
+
value: 9.269388198852539
|
197 |
+
name: Euclidean Accuracy Threshold
|
198 |
+
- type: euclidean_f1
|
199 |
+
value: 0.8301404853128991
|
200 |
+
name: Euclidean F1
|
201 |
+
- type: euclidean_f1_threshold
|
202 |
+
value: 9.525729179382324
|
203 |
+
name: Euclidean F1 Threshold
|
204 |
+
- type: euclidean_precision
|
205 |
+
value: 0.7888349514563107
|
206 |
+
name: Euclidean Precision
|
207 |
+
- type: euclidean_recall
|
208 |
+
value: 0.876010781671159
|
209 |
+
name: Euclidean Recall
|
210 |
+
- type: euclidean_ap
|
211 |
+
value: 0.8884154240019244
|
212 |
+
name: Euclidean Ap
|
213 |
+
- type: max_accuracy
|
214 |
+
value: 0.868
|
215 |
+
name: Max Accuracy
|
216 |
+
- type: max_accuracy_threshold
|
217 |
+
value: 208.00347900390625
|
218 |
+
name: Max Accuracy Threshold
|
219 |
+
- type: max_f1
|
220 |
+
value: 0.8307692307692308
|
221 |
+
name: Max F1
|
222 |
+
- type: max_f1_threshold
|
223 |
+
value: 208.00347900390625
|
224 |
+
name: Max F1 Threshold
|
225 |
+
- type: max_precision
|
226 |
+
value: 0.7921760391198044
|
227 |
+
name: Max Precision
|
228 |
+
- type: max_recall
|
229 |
+
value: 0.9407008086253369
|
230 |
+
name: Max Recall
|
231 |
+
- type: max_ap
|
232 |
+
value: 0.8884154240019244
|
233 |
+
name: Max Ap
|
234 |
+
- task:
|
235 |
+
type: paraphrase-mining
|
236 |
+
name: Paraphrase Mining
|
237 |
+
dataset:
|
238 |
+
name: quora duplicates dev
|
239 |
+
type: quora-duplicates-dev
|
240 |
+
metrics:
|
241 |
+
- type: average_precision
|
242 |
+
value: 0.534436244125929
|
243 |
+
name: Average Precision
|
244 |
+
- type: f1
|
245 |
+
value: 0.5447997274541295
|
246 |
+
name: F1
|
247 |
+
- type: precision
|
248 |
+
value: 0.5311002514589362
|
249 |
+
name: Precision
|
250 |
+
- type: recall
|
251 |
+
value: 0.5592246590398161
|
252 |
+
name: Recall
|
253 |
+
- type: threshold
|
254 |
+
value: 0.8626040816307068
|
255 |
+
name: Threshold
|
256 |
+
- task:
|
257 |
+
type: information-retrieval
|
258 |
+
name: Information Retrieval
|
259 |
+
dataset:
|
260 |
+
name: Unknown
|
261 |
+
type: unknown
|
262 |
+
metrics:
|
263 |
+
- type: cosine_accuracy@1
|
264 |
+
value: 0.928
|
265 |
+
name: Cosine Accuracy@1
|
266 |
+
- type: cosine_accuracy@3
|
267 |
+
value: 0.9712
|
268 |
+
name: Cosine Accuracy@3
|
269 |
+
- type: cosine_accuracy@5
|
270 |
+
value: 0.9782
|
271 |
+
name: Cosine Accuracy@5
|
272 |
+
- type: cosine_accuracy@10
|
273 |
+
value: 0.9874
|
274 |
+
name: Cosine Accuracy@10
|
275 |
+
- type: cosine_precision@1
|
276 |
+
value: 0.928
|
277 |
+
name: Cosine Precision@1
|
278 |
+
- type: cosine_precision@3
|
279 |
+
value: 0.4151333333333334
|
280 |
+
name: Cosine Precision@3
|
281 |
+
- type: cosine_precision@5
|
282 |
+
value: 0.26656
|
283 |
+
name: Cosine Precision@5
|
284 |
+
- type: cosine_precision@10
|
285 |
+
value: 0.14166
|
286 |
+
name: Cosine Precision@10
|
287 |
+
- type: cosine_recall@1
|
288 |
+
value: 0.7993523853760618
|
289 |
+
name: Cosine Recall@1
|
290 |
+
- type: cosine_recall@3
|
291 |
+
value: 0.9341884771405065
|
292 |
+
name: Cosine Recall@3
|
293 |
+
- type: cosine_recall@5
|
294 |
+
value: 0.9560896250710075
|
295 |
+
name: Cosine Recall@5
|
296 |
+
- type: cosine_recall@10
|
297 |
+
value: 0.9766088525134997
|
298 |
+
name: Cosine Recall@10
|
299 |
+
- type: cosine_ndcg@10
|
300 |
+
value: 0.9516150309696244
|
301 |
+
name: Cosine Ndcg@10
|
302 |
+
- type: cosine_mrr@10
|
303 |
+
value: 0.9509392857142857
|
304 |
+
name: Cosine Mrr@10
|
305 |
+
- type: cosine_map@100
|
306 |
+
value: 0.9390263696194139
|
307 |
+
name: Cosine Map@100
|
308 |
+
- type: dot_accuracy@1
|
309 |
+
value: 0.8926
|
310 |
+
name: Dot Accuracy@1
|
311 |
+
- type: dot_accuracy@3
|
312 |
+
value: 0.9518
|
313 |
+
name: Dot Accuracy@3
|
314 |
+
- type: dot_accuracy@5
|
315 |
+
value: 0.9658
|
316 |
+
name: Dot Accuracy@5
|
317 |
+
- type: dot_accuracy@10
|
318 |
+
value: 0.9768
|
319 |
+
name: Dot Accuracy@10
|
320 |
+
- type: dot_precision@1
|
321 |
+
value: 0.8926
|
322 |
+
name: Dot Precision@1
|
323 |
+
- type: dot_precision@3
|
324 |
+
value: 0.40273333333333333
|
325 |
+
name: Dot Precision@3
|
326 |
+
- type: dot_precision@5
|
327 |
+
value: 0.26076
|
328 |
+
name: Dot Precision@5
|
329 |
+
- type: dot_precision@10
|
330 |
+
value: 0.13882
|
331 |
+
name: Dot Precision@10
|
332 |
+
- type: dot_recall@1
|
333 |
+
value: 0.7679620996617761
|
334 |
+
name: Dot Recall@1
|
335 |
+
- type: dot_recall@3
|
336 |
+
value: 0.9105756956997251
|
337 |
+
name: Dot Recall@3
|
338 |
+
- type: dot_recall@5
|
339 |
+
value: 0.9402185219519044
|
340 |
+
name: Dot Recall@5
|
341 |
+
- type: dot_recall@10
|
342 |
+
value: 0.9623418143294613
|
343 |
+
name: Dot Recall@10
|
344 |
+
- type: dot_ndcg@10
|
345 |
+
value: 0.9263520741106431
|
346 |
+
name: Dot Ndcg@10
|
347 |
+
- type: dot_mrr@10
|
348 |
+
value: 0.9243020634920638
|
349 |
+
name: Dot Mrr@10
|
350 |
+
- type: dot_map@100
|
351 |
+
value: 0.9094019438194247
|
352 |
+
name: Dot Map@100
|
353 |
+
---
|
354 |
+
|
355 |
+
# SentenceTransformer based on sentence-transformers/stsb-distilbert-base
|
356 |
+
|
357 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
358 |
+
|
359 |
+
## Model Details
|
360 |
+
|
361 |
+
### Model Description
|
362 |
+
- **Model Type:** Sentence Transformer
|
363 |
+
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision 82ad392c08f81be9be9bf065339670b23f2e1493 -->
|
364 |
+
- **Maximum Sequence Length:** 128 tokens
|
365 |
+
- **Output Dimensionality:** 768 tokens
|
366 |
+
- **Similarity Function:** Cosine Similarity
|
367 |
+
- **Training Dataset:**
|
368 |
+
- [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
|
369 |
+
- **Language:** en
|
370 |
+
<!-- - **License:** Unknown -->
|
371 |
+
|
372 |
+
### Model Sources
|
373 |
+
|
374 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
375 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
376 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
377 |
+
|
378 |
+
### Full Model Architecture
|
379 |
+
|
380 |
+
```
|
381 |
+
SentenceTransformer(
|
382 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
383 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
384 |
+
)
|
385 |
+
```
|
386 |
+
|
387 |
+
## Usage
|
388 |
+
|
389 |
+
### Direct Usage (Sentence Transformers)
|
390 |
+
|
391 |
+
First install the Sentence Transformers library:
|
392 |
+
|
393 |
+
```bash
|
394 |
+
pip install -U sentence-transformers
|
395 |
+
```
|
396 |
+
|
397 |
+
Then you can load this model and run inference.
|
398 |
+
```python
|
399 |
+
from sentence_transformers import SentenceTransformer
|
400 |
+
|
401 |
+
# Download from the 🤗 Hub
|
402 |
+
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-ocl")
|
403 |
+
# Run inference
|
404 |
+
sentences = [
|
405 |
+
'Is stretching bad?',
|
406 |
+
'Is stretching good for you?',
|
407 |
+
'If i=0; what will i=i++ do to i?',
|
408 |
+
]
|
409 |
+
embeddings = model.encode(sentences)
|
410 |
+
print(embeddings.shape)
|
411 |
+
# [3, 768]
|
412 |
+
|
413 |
+
# Get the similarity scores for the embeddings
|
414 |
+
similarities = model.similarity(embeddings)
|
415 |
+
print(similarities.shape)
|
416 |
+
# [3, 3]
|
417 |
+
```
|
418 |
+
|
419 |
+
<!--
|
420 |
+
### Direct Usage (Transformers)
|
421 |
+
|
422 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
423 |
+
|
424 |
+
</details>
|
425 |
+
-->
|
426 |
+
|
427 |
+
<!--
|
428 |
+
### Downstream Usage (Sentence Transformers)
|
429 |
+
|
430 |
+
You can finetune this model on your own dataset.
|
431 |
+
|
432 |
+
<details><summary>Click to expand</summary>
|
433 |
+
|
434 |
+
</details>
|
435 |
+
-->
|
436 |
+
|
437 |
+
<!--
|
438 |
+
### Out-of-Scope Use
|
439 |
+
|
440 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
441 |
+
-->
|
442 |
+
|
443 |
+
## Evaluation
|
444 |
+
|
445 |
+
### Metrics
|
446 |
+
|
447 |
+
#### Binary Classification
|
448 |
+
* Dataset: `quora-duplicates`
|
449 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
450 |
+
|
451 |
+
| Metric | Value |
|
452 |
+
|:-----------------------------|:-----------|
|
453 |
+
| cosine_accuracy | 0.86 |
|
454 |
+
| cosine_accuracy_threshold | 0.8104 |
|
455 |
+
| cosine_f1 | 0.8251 |
|
456 |
+
| cosine_f1_threshold | 0.7248 |
|
457 |
+
| cosine_precision | 0.7347 |
|
458 |
+
| cosine_recall | 0.9407 |
|
459 |
+
| cosine_ap | 0.8872 |
|
460 |
+
| dot_accuracy | 0.828 |
|
461 |
+
| dot_accuracy_threshold | 157.3549 |
|
462 |
+
| dot_f1 | 0.7899 |
|
463 |
+
| dot_f1_threshold | 145.7113 |
|
464 |
+
| dot_precision | 0.7155 |
|
465 |
+
| dot_recall | 0.8814 |
|
466 |
+
| dot_ap | 0.8369 |
|
467 |
+
| manhattan_accuracy | 0.868 |
|
468 |
+
| manhattan_accuracy_threshold | 208.0035 |
|
469 |
+
| manhattan_f1 | 0.8308 |
|
470 |
+
| manhattan_f1_threshold | 208.0035 |
|
471 |
+
| manhattan_precision | 0.7922 |
|
472 |
+
| manhattan_recall | 0.8733 |
|
473 |
+
| manhattan_ap | 0.8868 |
|
474 |
+
| euclidean_accuracy | 0.867 |
|
475 |
+
| euclidean_accuracy_threshold | 9.2694 |
|
476 |
+
| euclidean_f1 | 0.8301 |
|
477 |
+
| euclidean_f1_threshold | 9.5257 |
|
478 |
+
| euclidean_precision | 0.7888 |
|
479 |
+
| euclidean_recall | 0.876 |
|
480 |
+
| euclidean_ap | 0.8884 |
|
481 |
+
| max_accuracy | 0.868 |
|
482 |
+
| max_accuracy_threshold | 208.0035 |
|
483 |
+
| max_f1 | 0.8308 |
|
484 |
+
| max_f1_threshold | 208.0035 |
|
485 |
+
| max_precision | 0.7922 |
|
486 |
+
| max_recall | 0.9407 |
|
487 |
+
| **max_ap** | **0.8884** |
|
488 |
+
|
489 |
+
#### Paraphrase Mining
|
490 |
+
* Dataset: `quora-duplicates-dev`
|
491 |
+
* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
|
492 |
+
|
493 |
+
| Metric | Value |
|
494 |
+
|:----------------------|:-----------|
|
495 |
+
| **average_precision** | **0.5344** |
|
496 |
+
| f1 | 0.5448 |
|
497 |
+
| precision | 0.5311 |
|
498 |
+
| recall | 0.5592 |
|
499 |
+
| threshold | 0.8626 |
|
500 |
+
|
501 |
+
#### Information Retrieval
|
502 |
+
|
503 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
504 |
+
|
505 |
+
| Metric | Value |
|
506 |
+
|:--------------------|:----------|
|
507 |
+
| cosine_accuracy@1 | 0.928 |
|
508 |
+
| cosine_accuracy@3 | 0.9712 |
|
509 |
+
| cosine_accuracy@5 | 0.9782 |
|
510 |
+
| cosine_accuracy@10 | 0.9874 |
|
511 |
+
| cosine_precision@1 | 0.928 |
|
512 |
+
| cosine_precision@3 | 0.4151 |
|
513 |
+
| cosine_precision@5 | 0.2666 |
|
514 |
+
| cosine_precision@10 | 0.1417 |
|
515 |
+
| cosine_recall@1 | 0.7994 |
|
516 |
+
| cosine_recall@3 | 0.9342 |
|
517 |
+
| cosine_recall@5 | 0.9561 |
|
518 |
+
| cosine_recall@10 | 0.9766 |
|
519 |
+
| cosine_ndcg@10 | 0.9516 |
|
520 |
+
| cosine_mrr@10 | 0.9509 |
|
521 |
+
| **cosine_map@100** | **0.939** |
|
522 |
+
| dot_accuracy@1 | 0.8926 |
|
523 |
+
| dot_accuracy@3 | 0.9518 |
|
524 |
+
| dot_accuracy@5 | 0.9658 |
|
525 |
+
| dot_accuracy@10 | 0.9768 |
|
526 |
+
| dot_precision@1 | 0.8926 |
|
527 |
+
| dot_precision@3 | 0.4027 |
|
528 |
+
| dot_precision@5 | 0.2608 |
|
529 |
+
| dot_precision@10 | 0.1388 |
|
530 |
+
| dot_recall@1 | 0.768 |
|
531 |
+
| dot_recall@3 | 0.9106 |
|
532 |
+
| dot_recall@5 | 0.9402 |
|
533 |
+
| dot_recall@10 | 0.9623 |
|
534 |
+
| dot_ndcg@10 | 0.9264 |
|
535 |
+
| dot_mrr@10 | 0.9243 |
|
536 |
+
| dot_map@100 | 0.9094 |
|
537 |
+
|
538 |
+
<!--
|
539 |
+
## Bias, Risks and Limitations
|
540 |
+
|
541 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
542 |
+
-->
|
543 |
+
|
544 |
+
<!--
|
545 |
+
### Recommendations
|
546 |
+
|
547 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
548 |
+
-->
|
549 |
+
|
550 |
+
## Training Details
|
551 |
+
|
552 |
+
### Training Dataset
|
553 |
+
|
554 |
+
#### sentence-transformers/quora-duplicates
|
555 |
+
|
556 |
+
* Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
557 |
+
* Size: 100,000 training samples
|
558 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
559 |
+
* Approximate statistics based on the first 1000 samples:
|
560 |
+
| | sentence1 | sentence2 | label |
|
561 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
562 |
+
| type | string | string | int |
|
563 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.5 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.46 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>0: ~64.10%</li><li>1: ~35.90%</li></ul> |
|
564 |
+
* Samples:
|
565 |
+
| sentence1 | sentence2 | label |
|
566 |
+
|:---------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
|
567 |
+
| <code>What are the best ecommerce blogs to do guest posts on about SEO to gain new clients?</code> | <code>Interested in being a guest blogger for an ecommerce marketing blog?</code> | <code>0</code> |
|
568 |
+
| <code>How do I learn Informatica online training?</code> | <code>What is Informatica online training?</code> | <code>0</code> |
|
569 |
+
| <code>What effects does marijuana use have on the flu?</code> | <code>What effects does Marijuana use have on the common cold?</code> | <code>0</code> |
|
570 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#onlinecontrastiveloss)
|
571 |
+
|
572 |
+
### Evaluation Dataset
|
573 |
+
|
574 |
+
#### sentence-transformers/quora-duplicates
|
575 |
+
|
576 |
+
* Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
577 |
+
* Size: 1,000 evaluation samples
|
578 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
579 |
+
* Approximate statistics based on the first 1000 samples:
|
580 |
+
| | sentence1 | sentence2 | label |
|
581 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
582 |
+
| type | string | string | int |
|
583 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.82 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.91 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~62.90%</li><li>1: ~37.10%</li></ul> |
|
584 |
+
* Samples:
|
585 |
+
| sentence1 | sentence2 | label |
|
586 |
+
|:------------------------------------------------------|:---------------------------------------------------|:---------------|
|
587 |
+
| <code>How should I prepare for JEE Mains 2017?</code> | <code>How do I prepare for the JEE 2016?</code> | <code>0</code> |
|
588 |
+
| <code>What is the gate exam?</code> | <code>What is the GATE exam in engineering?</code> | <code>0</code> |
|
589 |
+
| <code>Where do IRS officers get posted?</code> | <code>Does IRS Officers get posted abroad?</code> | <code>0</code> |
|
590 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#onlinecontrastiveloss)
|
591 |
+
|
592 |
+
### Training Hyperparameters
|
593 |
+
#### Non-Default Hyperparameters
|
594 |
+
|
595 |
+
- `eval_strategy`: steps
|
596 |
+
- `per_device_train_batch_size`: 64
|
597 |
+
- `per_device_eval_batch_size`: 64
|
598 |
+
- `num_train_epochs`: 1
|
599 |
+
- `warmup_ratio`: 0.1
|
600 |
+
- `fp16`: True
|
601 |
+
- `batch_sampler`: no_duplicates
|
602 |
+
|
603 |
+
#### All Hyperparameters
|
604 |
+
<details><summary>Click to expand</summary>
|
605 |
+
|
606 |
+
- `overwrite_output_dir`: False
|
607 |
+
- `do_predict`: False
|
608 |
+
- `eval_strategy`: steps
|
609 |
+
- `prediction_loss_only`: False
|
610 |
+
- `per_device_train_batch_size`: 64
|
611 |
+
- `per_device_eval_batch_size`: 64
|
612 |
+
- `per_gpu_train_batch_size`: None
|
613 |
+
- `per_gpu_eval_batch_size`: None
|
614 |
+
- `gradient_accumulation_steps`: 1
|
615 |
+
- `eval_accumulation_steps`: None
|
616 |
+
- `learning_rate`: 5e-05
|
617 |
+
- `weight_decay`: 0.0
|
618 |
+
- `adam_beta1`: 0.9
|
619 |
+
- `adam_beta2`: 0.999
|
620 |
+
- `adam_epsilon`: 1e-08
|
621 |
+
- `max_grad_norm`: 1.0
|
622 |
+
- `num_train_epochs`: 1
|
623 |
+
- `max_steps`: -1
|
624 |
+
- `lr_scheduler_type`: linear
|
625 |
+
- `lr_scheduler_kwargs`: {}
|
626 |
+
- `warmup_ratio`: 0.1
|
627 |
+
- `warmup_steps`: 0
|
628 |
+
- `log_level`: passive
|
629 |
+
- `log_level_replica`: warning
|
630 |
+
- `log_on_each_node`: True
|
631 |
+
- `logging_nan_inf_filter`: True
|
632 |
+
- `save_safetensors`: True
|
633 |
+
- `save_on_each_node`: False
|
634 |
+
- `save_only_model`: False
|
635 |
+
- `no_cuda`: False
|
636 |
+
- `use_cpu`: False
|
637 |
+
- `use_mps_device`: False
|
638 |
+
- `seed`: 42
|
639 |
+
- `data_seed`: None
|
640 |
+
- `jit_mode_eval`: False
|
641 |
+
- `use_ipex`: False
|
642 |
+
- `bf16`: False
|
643 |
+
- `fp16`: True
|
644 |
+
- `fp16_opt_level`: O1
|
645 |
+
- `half_precision_backend`: auto
|
646 |
+
- `bf16_full_eval`: False
|
647 |
+
- `fp16_full_eval`: False
|
648 |
+
- `tf32`: None
|
649 |
+
- `local_rank`: 0
|
650 |
+
- `ddp_backend`: None
|
651 |
+
- `tpu_num_cores`: None
|
652 |
+
- `tpu_metrics_debug`: False
|
653 |
+
- `debug`: []
|
654 |
+
- `dataloader_drop_last`: False
|
655 |
+
- `dataloader_num_workers`: 0
|
656 |
+
- `dataloader_prefetch_factor`: None
|
657 |
+
- `past_index`: -1
|
658 |
+
- `disable_tqdm`: False
|
659 |
+
- `remove_unused_columns`: True
|
660 |
+
- `label_names`: None
|
661 |
+
- `load_best_model_at_end`: False
|
662 |
+
- `ignore_data_skip`: False
|
663 |
+
- `fsdp`: []
|
664 |
+
- `fsdp_min_num_params`: 0
|
665 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
666 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
667 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
668 |
+
- `deepspeed`: None
|
669 |
+
- `label_smoothing_factor`: 0.0
|
670 |
+
- `optim`: adamw_torch
|
671 |
+
- `optim_args`: None
|
672 |
+
- `adafactor`: False
|
673 |
+
- `group_by_length`: False
|
674 |
+
- `length_column_name`: length
|
675 |
+
- `ddp_find_unused_parameters`: None
|
676 |
+
- `ddp_bucket_cap_mb`: None
|
677 |
+
- `ddp_broadcast_buffers`: None
|
678 |
+
- `dataloader_pin_memory`: True
|
679 |
+
- `dataloader_persistent_workers`: False
|
680 |
+
- `skip_memory_metrics`: True
|
681 |
+
- `use_legacy_prediction_loop`: False
|
682 |
+
- `push_to_hub`: False
|
683 |
+
- `resume_from_checkpoint`: None
|
684 |
+
- `hub_model_id`: None
|
685 |
+
- `hub_strategy`: every_save
|
686 |
+
- `hub_private_repo`: False
|
687 |
+
- `hub_always_push`: False
|
688 |
+
- `gradient_checkpointing`: False
|
689 |
+
- `gradient_checkpointing_kwargs`: None
|
690 |
+
- `include_inputs_for_metrics`: False
|
691 |
+
- `eval_do_concat_batches`: True
|
692 |
+
- `fp16_backend`: auto
|
693 |
+
- `push_to_hub_model_id`: None
|
694 |
+
- `push_to_hub_organization`: None
|
695 |
+
- `mp_parameters`:
|
696 |
+
- `auto_find_batch_size`: False
|
697 |
+
- `full_determinism`: False
|
698 |
+
- `torchdynamo`: None
|
699 |
+
- `ray_scope`: last
|
700 |
+
- `ddp_timeout`: 1800
|
701 |
+
- `torch_compile`: False
|
702 |
+
- `torch_compile_backend`: None
|
703 |
+
- `torch_compile_mode`: None
|
704 |
+
- `dispatch_batches`: None
|
705 |
+
- `split_batches`: None
|
706 |
+
- `include_tokens_per_second`: False
|
707 |
+
- `include_num_input_tokens_seen`: False
|
708 |
+
- `neftune_noise_alpha`: None
|
709 |
+
- `optim_target_modules`: None
|
710 |
+
- `batch_sampler`: no_duplicates
|
711 |
+
- `multi_dataset_batch_sampler`: proportional
|
712 |
+
|
713 |
+
</details>
|
714 |
+
|
715 |
+
### Training Logs
|
716 |
+
| Epoch | Step | Training Loss | loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
|
717 |
+
|:------:|:----:|:-------------:|:------:|:--------------:|:--------------------------------------:|:-----------------------:|
|
718 |
+
| 0 | 0 | - | - | 0.9235 | 0.4200 | 0.7276 |
|
719 |
+
| 0.0640 | 100 | 2.5123 | - | - | - | - |
|
720 |
+
| 0.1280 | 200 | 2.0534 | - | - | - | - |
|
721 |
+
| 0.1599 | 250 | - | 1.7914 | 0.9127 | 0.4082 | 0.8301 |
|
722 |
+
| 0.1919 | 300 | 1.9505 | - | - | - | - |
|
723 |
+
| 0.2559 | 400 | 1.9836 | - | - | - | - |
|
724 |
+
| 0.3199 | 500 | 1.8462 | 1.5923 | 0.9190 | 0.4445 | 0.8688 |
|
725 |
+
| 0.3839 | 600 | 1.7734 | - | - | - | - |
|
726 |
+
| 0.4479 | 700 | 1.7918 | - | - | - | - |
|
727 |
+
| 0.4798 | 750 | - | 1.5461 | 0.9291 | 0.4943 | 0.8707 |
|
728 |
+
| 0.5118 | 800 | 1.6157 | - | - | - | - |
|
729 |
+
| 0.5758 | 900 | 1.7244 | - | - | - | - |
|
730 |
+
| 0.6398 | 1000 | 1.7322 | 1.5294 | 0.9309 | 0.5048 | 0.8808 |
|
731 |
+
| 0.7038 | 1100 | 1.6825 | - | - | - | - |
|
732 |
+
| 0.7678 | 1200 | 1.6823 | - | - | - | - |
|
733 |
+
| 0.7997 | 1250 | - | 1.4812 | 0.9351 | 0.5126 | 0.8865 |
|
734 |
+
| 0.8317 | 1300 | 1.5707 | - | - | - | - |
|
735 |
+
| 0.8957 | 1400 | 1.6145 | - | - | - | - |
|
736 |
+
| 0.9597 | 1500 | 1.5795 | 1.4705 | 0.9390 | 0.5344 | 0.8884 |
|
737 |
+
|
738 |
+
|
739 |
+
### Environmental Impact
|
740 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
741 |
+
- **Energy Consumed**: 0.040 kWh
|
742 |
+
- **Carbon Emitted**: 0.016 kg of CO2
|
743 |
+
- **Hours Used**: 0.202 hours
|
744 |
+
|
745 |
+
### Training Hardware
|
746 |
+
- **On Cloud**: No
|
747 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
748 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
749 |
+
- **RAM Size**: 31.78 GB
|
750 |
+
|
751 |
+
### Framework Versions
|
752 |
+
- Python: 3.11.6
|
753 |
+
- Sentence Transformers: 3.0.0.dev0
|
754 |
+
- Transformers: 4.41.0.dev0
|
755 |
+
- PyTorch: 2.3.0+cu121
|
756 |
+
- Accelerate: 0.26.1
|
757 |
+
- Datasets: 2.18.0
|
758 |
+
- Tokenizers: 0.19.1
|
759 |
+
|
760 |
+
## Citation
|
761 |
+
|
762 |
+
### BibTeX
|
763 |
+
|
764 |
+
#### Sentence Transformers
|
765 |
+
```bibtex
|
766 |
+
@inproceedings{reimers-2019-sentence-bert,
|
767 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
768 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
769 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
770 |
+
month = "11",
|
771 |
+
year = "2019",
|
772 |
+
publisher = "Association for Computational Linguistics",
|
773 |
+
url = "https://arxiv.org/abs/1908.10084",
|
774 |
+
}
|
775 |
+
```
|
776 |
+
|
777 |
+
<!--
|
778 |
+
## Glossary
|
779 |
+
|
780 |
+
*Clearly define terms in order to be accessible across audiences.*
|
781 |
+
-->
|
782 |
+
|
783 |
+
<!--
|
784 |
+
## Model Card Authors
|
785 |
+
|
786 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
787 |
+
-->
|
788 |
+
|
789 |
+
<!--
|
790 |
+
## Model Card Contact
|
791 |
+
|
792 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
793 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/stsb-distilbert-base",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.0.dev0",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d03b2524152e39f65f10176d2e5fa7b0f261cf9b9a1e7f66c3d49829099318c
|
3 |
+
size 265462608
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 128,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "DistilBertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|