ppo-LunarLander-v2 / config.json
tomasito12's picture
Upload PPO LunarLander-v2 trained agent
81a75b0
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e007d9eb010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e007d9eb0a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e007d9eb130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e007d9eb1c0>", "_build": "<function ActorCriticPolicy._build at 0x7e007d9eb250>", "forward": "<function ActorCriticPolicy.forward at 0x7e007d9eb2e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e007d9eb370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e007d9eb400>", "_predict": "<function ActorCriticPolicy._predict at 0x7e007d9eb490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e007d9eb520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e007d9eb5b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e007d9eb640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e007d9f0b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693745049302068908, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqrcb1SqPK56JF+Oh7csLMd56Y78G6EMgAAgD8AAIA/s+aBPa6BmLqW/so7kJ3aN8pqjjpNeHo1AACAPwAAgD/NSIU7UijouQ7Vv7rzOUq1aL0Iu5Ws4DkAAIA/AACAP82kdrvheIG6Oz/buiaU5LU8Tqe6VZT/OQAAgD8AAIA/ZrqzO3tGhLrZYrW6b/Oetm0IUTsTTtM5AACAPwAAgD+QpYE+kgg9P/pYOL4COlq+I9QCPCo5e7sAAAAAAAAAADNKHL09AJo+QqAuvrXaSr5TG8e9cABbPQAAAAAAAAAATRFQvaSQF7n6aLa6c+IAtVN8H7uVx9k5AACAPwAAgD8A1KA8zGa3Pz349T7/8lA+0zE2vDpgBrsAAAAAAAAAAMCLtb3t24A+DVu7PDIHar7e+Xu9Q6bHPQAAAAAAAAAAAGnuvPaAWLoR5go8VfChtU0EC7s7SaS0AACAPwAAgD8ARUC+I7EBP7C6Cz47zFO+pjQsvYaOgT0AAAAAAAAAAJo4qjzaxWQ/yoKKvfYIpr7t3KC8SxXAPQAAAAAAAAAAul5/ProkrT+6AQQ/kb/BveNLmT6RX7w9AAAAAAAAAAD6qjK+CCyKPfyDRT5kloO+957BvFtQTz0AAAAAAAAAADNWQz5q0I8/+owjvPaDh7761tU9WJvdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGu0pd8iOiMAWyUTegDjAF0lEdAlVG99x6v7nV9lChoBkdAZMyvhZQpF2gHTegDaAhHQJVVAznA6+51fZQoaAZHQGPcN3fQ8fVoB03oA2gIR0CVWjYjSofkdX2UKGgGR0Bf839FWn0kaAdN6ANoCEdAlVvl5GBnSXV9lChoBkdAZXQW2PT5PGgHTegDaAhHQJVgpuNxVAB1fZQoaAZHQGbPKYJE6T5oB03oA2gIR0CVeoqAz544dX2UKGgGR0Bl8tB4Uvf1aAdN6ANoCEdAlX6yXyAhCHV9lChoBkdALEYQz1schmgHTQMBaAhHQJV+zJ2dNFl1fZQoaAZHQGK2y/9Hc1xoB03oA2gIR0CVgb+m3vx6dX2UKGgGR0BhaQevIOpbaAdN6ANoCEdAlYoMOCoS+XV9lChoBkdAYTXKoQ4CIWgHTegDaAhHQJWKm0zCUHJ1fZQoaAZHQGJJPJzT4L1oB03oA2gIR0CVkMLIxQBQdX2UKGgGR0Bg2kMspXp4aAdN6ANoCEdAlZZabe/HpHV9lChoBkdARCo2OyVv/GgHTTQBaAhHQJWXAu8K5TZ1fZQoaAZHQGF0NFz+3phoB03oA2gIR0CVm7mG/N7jdX2UKGgGR0Bkv7CN0eU7aAdN6ANoCEdAlZyHKwIMSnV9lChoBkdAYdDwI+nqFGgHTegDaAhHQJWgCmqHXVd1fZQoaAZHQF/YBK+SKWNoB03oA2gIR0CVofiMYMvzdX2UKGgGR0BaHXsC1Z1WaAdN6ANoCEdAlaL+9FnZkHV9lChoBkdAZEEZ2IO6NGgHTegDaAhHQJWmE7GNrCZ1fZQoaAZHQFzkZamoBJZoB03oA2gIR0CVq0yJKraNdX2UKGgGR0BB4637UG3XaAdNTQFoCEdAla5UDU3GXHV9lChoBkdAOCF9F4LThGgHS/poCEdAla9Iu5BkZ3V9lChoBkdAXU/c1wYLs2gHTegDaAhHQJWywTzundh1fZQoaAZHQGXEMPJ7sv9oB03oA2gIR0CV0KJ9y926dX2UKGgGR0AyaINmUW2xaAdNGAFoCEdAldMcUM5OrXV9lChoBkdAYUYuRLbpNmgHTegDaAhHQJXTtFkQPI51fZQoaAZHQGQersjVx0doB03oA2gIR0CV08hAnlXBdX2UKGgGR0As/R2r4nF6aAdNKgFoCEdAldeGalUIcHV9lChoBkdAPUHcHnlny2gHTSABaAhHQJXX52X9itt1fZQoaAZHQGQ/qYAsCkpoB03oA2gIR0CV3AHNX5nEdX2UKGgGR0BjbPxBmf5DaAdN6ANoCEdAldyJFPSDy3V9lChoBkdAZCKADJU5uWgHTegDaAhHQJXieNdZ7ol1fZQoaAZHQGE0y+HrQgNoB03oA2gIR0CV54p0wJw9dX2UKGgGR0BkHy6pYLb6aAdN6ANoCEdAlegnnEETx3V9lChoBkdAYfjbRF7UomgHTegDaAhHQJXs9J6IFeR1fZQoaAZHQGM15q/M4cZoB03oA2gIR0CV856asp5NdX2UKGgGR0BdrQCSzPa+aAdN6ANoCEdAlfkL2+PBBXV9lChoBkdAXBc+kgwGnmgHTegDaAhHQJX+/VXmvGJ1fZQoaAZHQGSor9MsYl9oB03oA2gIR0CWED1V5rxidX2UKGgGR0BiSFcKPXCkaAdN6ANoCEdAlioQcDKYA3V9lChoBkdAWnwnMMZxaWgHTegDaAhHQJYs84uK4x11fZQoaAZHQGMGRNRFZxJoB03oA2gIR0CWLeDE3sHCdX2UKGgGR0BYqq6e5Fw2aAdN6ANoCEdAli353os7MnV9lChoBkdAZNIl+mWMTGgHTegDaAhHQJYzhhAnlXB1fZQoaAZHQGSNJQDV6NVoB03oA2gIR0CWNCjcVQANdX2UKGgGR0BePmgFotcwaAdN6ANoCEdAljpFXzUZvXV9lChoBkdAZqu5z5oGp2gHTegDaAhHQJY7CwMYuTR1fZQoaAZHQGJ1e9Jz1btoB03oA2gIR0CWQp6PKdQPdX2UKGgGR0BhT0iQkonbaAdN6ANoCEdAlke2+9Jz1nV9lChoBkfAORaU7jkuH2gHTRQBaAhHQJZICttALRd1fZQoaAZHQFpVzXSSeRRoB03oA2gIR0CWSEGtITXbdX2UKGgGR0BiFdHOKO1faAdN6ANoCEdAlkwsTnJT2nV9lChoBkdAZvbk5IYm9mgHTegDaAhHQJZQLyJ9Aop1fZQoaAZHQGJ1xT0g8r9oB03oA2gIR0CWU4l6Z6UrdX2UKGgGR0BjoNIqbz9TaAdN6ANoCEdAllc1rRBu43V9lChoBkfAMPjDKoybhGgHTRkBaAhHQJZXyOS4e911fZQoaAZHQGNGOX/o7mxoB03oA2gIR0CWZFGC7K7qdX2UKGgGR0A9JJTVDrquaAdNDwFoCEdAlmgDFAE+xHV9lChoBkdAYpAubI91U2gHTegDaAhHQJaCzvAoG6h1fZQoaAZHQGIK6Q/5ckdoB03oA2gIR0CWhWS5y2hJdX2UKGgGR0Bdu9elbeMyaAdN6ANoCEdAloX3vttygnV9lChoBkdAY/hyH2ys0mgHTegDaAhHQJaGDL9uP3l1fZQoaAZHQGPjzEBKcutoB03oA2gIR0CWilFiay8jdX2UKGgGR0BjhvHT7VJ+aAdN6ANoCEdAlo7VNDc/MXV9lChoBkdAYJ01dgOSXGgHTegDaAhHQJaPZg/keZJ1fZQoaAZHQFtNKLKmsNloB03oA2gIR0CWlcibDuSfdX2UKGgGR8ADOAkLQXyiaAdNDgFoCEdAlpdlaSs8xXV9lChoBkdAZ8t4CZF5OmgHTegDaAhHQJaboHY6GQF1fZQoaAZHQGKRco6S1VpoB03oA2gIR0CWnAoXKr7wdX2UKGgGR0BgPhpxm03PaAdN6ANoCEdAlqGUXk5p8HV9lChoBkdAZoEyIpH7QGgHTegDaAhHQJamgu01IiF1fZQoaAZHQGBVZrYXfqJoB03oA2gIR0CWq3zreIl/dX2UKGgGR0BgAifQKKHgaAdN6ANoCEdAlrMqDoQnQnV9lChoBkdAQ4OZXuE252gHTQUBaAhHQJbAk+5e7cx1fZQoaAZHQGXEgCwKSgZoB03oA2gIR0CWxoBeXzDodX2UKGgGR0Av3jH4oJAuaAdNLwFoCEdAlshV/DtPYXV9lChoBkdAYsAMAmzBymgHTegDaAhHQJbKdmukk8l1fZQoaAZHQGIxTrE9+w1oB03oA2gIR0CWzyqbjLjhdX2UKGgGR0BhgA1NxlxwaAdN6ANoCEdAluFMUuctoXV9lChoBkdAYrLJmNBF/mgHTegDaAhHQJbh5Z7ojfN1fZQoaAZHQGQkqYiPhhpoB03oA2gIR0CW5dZmZmZmdX2UKGgGR0BcWEz0pVjqaAdN6ANoCEdAlutmQwK0D3V9lChoBkdAYFUfaHsTnWgHTegDaAhHQJbsM8La24N1fZQoaAZHQGJ7szdk8RtoB03oA2gIR0CW9Sce8wpOdX2UKGgGR0Bj7+7lJYknaAdN6ANoCEdAlvdzl5nlGXV9lChoBkdAYGEJfpljE2gHTegDaAhHQJb9bN4Z/Ct1fZQoaAZHQFvqB3iaRZFoB03oA2gIR0CW/gD4xk/bdX2UKGgGR0BfKRyKekHlaAdN6ANoCEdAlwOGEf1YhnV9lChoBkdAQvhuyeI2wWgHS+hoCEdAlwlLRWtEHHV9lChoBkdAY4760IC2dGgHTegDaAhHQJcSVWCEpRZ1fZQoaAZHQC51XV9Wp61oB00xAWgIR0CXGfn0TURWdX2UKGgGR0A6u0OEug6EaAdL/GgIR0CXHEKc/dIodX2UKGgGR0BewxmkFfReaAdN6ANoCEdAlxxEy1uzhXV9lChoBkdAZAVKOktVaWgHTegDaAhHQJchhlbu+h51fZQoaAZHQGKl/wZwXIloB03oA2gIR0CXIz/7zkIYdX2UKGgGR0BjyYXTEzfraAdN6ANoCEdAlyUSTyJ9A3V9lChoBkdAPm6BmPHT7WgHTRgBaAhHQJcmSoAGSp11fZQoaAZHQFjnAvL5h0BoB03oA2gIR0CXKnQjD8+BdX2UKGgGR0BlsgLqlgtwaAdN6ANoCEdAly0y0rsjV3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}