---
base_model: sentence-transformers/paraphrase-MiniLM-L6-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:75253
- loss:CoSENTLoss
widget:
- source_sentence: buenos aires general pueyrredon mar del plata calle 395
sentences:
- buenos aires lujan de cuyo mar del plata calle 395
- buenos aires general pueyrredon mar del plata calle 499
- buenos aires general pueyrredon calle 15
- source_sentence: buenos aires bahia blanca chacabuco
sentences:
- jujuy ciudad autonoma buenos aires av eva peron
- buenos aires caada de gomez cadetes
- buenos aires bahia blanca migueletes
- source_sentence: buenos aires bahia blanca curumalal
sentences:
- buenos aires punilla mar del plata corbeta uruguay
- capital federal ciudad autonoma buenos aires av rey del bosque
- buenos aires rio chico curumalal
- source_sentence: buenos aires lomas de zamora sixto fernandez
sentences:
- buenos aires general pueyrredon santa rosa de calamuchita san lorenzo
- buenos aires jose ingenieros sixto fernandez
- buenos aires lomas de zamora florida luis viale
- source_sentence: buenos aires moreno francisco alvarez paramaribo
sentences:
- mendoza general pueyrredon mar del plata calle 3 b
- buenos aires moreno francisco alvarez bermejo
- buenos aires ezeiza av 60
---
# SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomasravel/modelo_finetuneado24")
# Run inference
sentences = [
'buenos aires moreno francisco alvarez paramaribo',
'buenos aires moreno francisco alvarez bermejo',
'mendoza general pueyrredon mar del plata calle 3 b',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 75,253 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
buenos aires lomas de zamora temperley cangallo
| buenos aires lomas de zamora cangallo
| 1.0
|
| buenos aires general pueyrredon mar del plata calle 33
| buenos aires maximo paz mar del plata calle 33
| 0.6
|
| buenos aires general pueyrredon mar del plata cordoba
| buenos aires washington mar del plata cordoba
| 0.6
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters