--- base_model: sentence-transformers/paraphrase-MiniLM-L6-v2 datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:75253 - loss:CoSENTLoss widget: - source_sentence: buenos aires general pueyrredon mar del plata calle 395 sentences: - buenos aires lujan de cuyo mar del plata calle 395 - buenos aires general pueyrredon mar del plata calle 499 - buenos aires general pueyrredon calle 15 - source_sentence: buenos aires bahia blanca chacabuco sentences: - jujuy ciudad autonoma buenos aires av eva peron - buenos aires caada de gomez cadetes - buenos aires bahia blanca migueletes - source_sentence: buenos aires bahia blanca curumalal sentences: - buenos aires punilla mar del plata corbeta uruguay - capital federal ciudad autonoma buenos aires av rey del bosque - buenos aires rio chico curumalal - source_sentence: buenos aires lomas de zamora sixto fernandez sentences: - buenos aires general pueyrredon santa rosa de calamuchita san lorenzo - buenos aires jose ingenieros sixto fernandez - buenos aires lomas de zamora florida luis viale - source_sentence: buenos aires moreno francisco alvarez paramaribo sentences: - mendoza general pueyrredon mar del plata calle 3 b - buenos aires moreno francisco alvarez bermejo - buenos aires ezeiza av 60 --- # SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomasravel/modelo_finetuneado24") # Run inference sentences = [ 'buenos aires moreno francisco alvarez paramaribo', 'buenos aires moreno francisco alvarez bermejo', 'mendoza general pueyrredon mar del plata calle 3 b', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 75,253 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:--------------------------------------------------------------------|:------------------------------------------------------------|:-----------------| | buenos aires lomas de zamora temperley cangallo | buenos aires lomas de zamora cangallo | 1.0 | | buenos aires general pueyrredon mar del plata calle 33 | buenos aires maximo paz mar del plata calle 33 | 0.6 | | buenos aires general pueyrredon mar del plata cordoba | buenos aires washington mar del plata cordoba | 0.6 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 10 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:------:|:-----:|:-------------:| | 0.2126 | 500 | 6.2141 | | 0.4252 | 1000 | 5.3697 | | 0.6378 | 1500 | 5.2046 | | 0.8503 | 2000 | 5.1007 | | 1.0629 | 2500 | 4.9564 | | 1.2755 | 3000 | 4.8524 | | 1.4881 | 3500 | 4.7941 | | 1.7007 | 4000 | 4.7099 | | 1.9133 | 4500 | 4.6723 | | 2.1259 | 5000 | 4.5816 | | 2.3384 | 5500 | 4.5275 | | 2.5510 | 6000 | 4.527 | | 2.7636 | 6500 | 4.4588 | | 2.9762 | 7000 | 4.4253 | | 3.1888 | 7500 | 4.3234 | | 3.4014 | 8000 | 4.3147 | | 3.6139 | 8500 | 4.2644 | | 3.8265 | 9000 | 4.256 | | 4.0391 | 9500 | 4.1724 | | 4.2517 | 10000 | 4.1406 | | 4.4643 | 10500 | 4.0917 | | 4.6769 | 11000 | 4.1334 | | 4.8895 | 11500 | 4.0791 | | 5.1020 | 12000 | 4.0217 | | 5.3146 | 12500 | 3.9745 | | 5.5272 | 13000 | 3.9575 | | 5.7398 | 13500 | 3.942 | | 5.9524 | 14000 | 3.9029 | | 6.1650 | 14500 | 3.8617 | | 6.3776 | 15000 | 3.8648 | | 6.5901 | 15500 | 3.7995 | | 6.8027 | 16000 | 3.83 | | 7.0153 | 16500 | 3.734 | | 7.2279 | 17000 | 3.7528 | | 7.4405 | 17500 | 3.634 | | 7.6531 | 18000 | 3.7306 | | 7.8656 | 18500 | 3.7076 | | 8.0782 | 19000 | 3.6494 | | 8.2908 | 19500 | 3.664 | | 8.5034 | 20000 | 3.5254 | | 8.7160 | 20500 | 3.5624 | | 8.9286 | 21000 | 3.5812 | | 9.1412 | 21500 | 3.566 | | 9.3537 | 22000 | 3.3967 | | 9.5663 | 22500 | 3.474 | | 9.7789 | 23000 | 3.5136 | | 9.9915 | 23500 | 3.4518 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.2.2+cu121 - Accelerate: 0.34.2 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```