File size: 1,962 Bytes
17e97c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-hateful-meme
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-finetuned-hateful-meme

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0538
- Accuracy: 0.544

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5795        | 1.0   | 532  | 0.7869          | 0.564    |
| 0.5101        | 2.0   | 1064 | 0.8646          | 0.56     |
| 0.4455        | 3.0   | 1596 | 0.9011          | 0.538    |
| 0.3926        | 4.0   | 2128 | 1.1856          | 0.542    |
| 0.3387        | 5.0   | 2660 | 1.1351          | 0.552    |
| 0.3056        | 6.0   | 3192 | 1.3704          | 0.55     |
| 0.2942        | 7.0   | 3724 | 1.7288          | 0.538    |
| 0.2665        | 8.0   | 4256 | 1.7215          | 0.544    |
| 0.2498        | 9.0   | 4788 | 1.8634          | 0.542    |
| 0.2357        | 10.0  | 5320 | 2.0538          | 0.544    |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.3
- Tokenizers 0.13.3