--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-hateful-meme-restructured results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.552 --- # vit-base-patch16-224-finetuned-hateful-meme-restructured This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7152 - Accuracy: 0.552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6546 | 0.99 | 66 | 0.7185 | 0.52 | | 0.6222 | 2.0 | 133 | 0.7152 | 0.552 | | 0.5986 | 2.99 | 199 | 0.7344 | 0.542 | | 0.5535 | 4.0 | 266 | 0.7782 | 0.514 | | 0.5377 | 4.99 | 332 | 0.8329 | 0.514 | | 0.5115 | 6.0 | 399 | 0.7596 | 0.528 | | 0.5133 | 6.99 | 465 | 0.8151 | 0.512 | | 0.511 | 8.0 | 532 | 0.7897 | 0.538 | | 0.4712 | 8.99 | 598 | 0.8539 | 0.514 | | 0.4626 | 9.92 | 660 | 0.8449 | 0.522 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3