ton-anh commited on
Commit
2fdace3
·
verified ·
1 Parent(s): ac59d71

Upload GPT

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
adapter_v2.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
2
+
3
+ """Implementation of the paper:
4
+
5
+ LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
6
+ https://arxiv.org/abs/2304.15010
7
+
8
+ Port for LitGPT
9
+ """
10
+
11
+ from dataclasses import dataclass
12
+ from typing import Any, Dict, List, Optional, Tuple, Type, Union
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ from typing_extensions import Self
17
+
18
+ import litgpt
19
+ from litgpt.adapter import GPT as BaseModel
20
+ from litgpt.adapter import Block as BaseBlock
21
+ from litgpt.adapter import CausalSelfAttention as BaseCausalSelfAttention
22
+ from litgpt.adapter import Config as BaseConfig
23
+ from litgpt.model import KVCache
24
+ from litgpt.utils import map_old_state_dict_weights
25
+ from litgpt.model import KVCache, apply_rope
26
+ from litgpt.smoe import AdapterV2SMoE
27
+
28
+ from transformers import PreTrainedModel
29
+
30
+ @dataclass
31
+ class Config(BaseConfig):
32
+ @property
33
+ def mlp_class(self) -> Type:
34
+ return getattr(litgpt.adapter_v2, self.mlp_class_name)
35
+
36
+ @dataclass
37
+ class ConfigSMOE(BaseConfig):
38
+ use_smoe: bool=False
39
+ num_experts: int=4
40
+ top_k: int=1
41
+ alpha: int=0
42
+ model_type: str = "gpt"
43
+ def __init__(self, *args, **kwargs):
44
+ super(ConfigSMOE, self).__init__(*args, **kwargs)
45
+
46
+ @property
47
+ def mlp_class(self) -> Type:
48
+ return getattr(litgpt.adapter_v2, self.mlp_class_name)
49
+ def load_extra(self, extra_config):
50
+ for k in list(extra_config.keys()):
51
+ setattr(self, k, extra_config[k])
52
+
53
+ # @dataclass
54
+ # class ConfigSMOE(BaseConfig):
55
+ # use_smoe: bool=False
56
+ # num_experts: int=4
57
+ # top_k: int=1
58
+ # alpha: int=0
59
+ # @property
60
+ # def mlp_class(self) -> Type:
61
+ # return getattr(litgpt.adapter_v2, self.mlp_class_name)
62
+ # def load_extra(self, extra_config):
63
+ # for k in list(extra_config.keys()):
64
+ # setattr(self, k, extra_config[k])
65
+
66
+
67
+
68
+ def adapter_filter(key: str, value: Any) -> bool:
69
+
70
+ adapter_substrings = (
71
+ # regular adapter v1 parameters
72
+ "adapter_wte",
73
+ "gating_factor",
74
+ # adapter v2: new bias and scale used in Linear
75
+ "adapter_scale",
76
+ "adapter_bias",
77
+ # adapter v2: Norm parameters are now trainable
78
+ "norm_1",
79
+ "norm_2",
80
+ "ln_f",
81
+ # smoe: gating mechanism
82
+ "gate",
83
+ )
84
+ return any(s in key for s in adapter_substrings)
85
+
86
+
87
+ class AdapterV2Linear(torch.nn.Module):
88
+ def __init__(self, in_features: int, out_features: int, **kwargs) -> None:
89
+ super().__init__()
90
+ self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
91
+ self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False)
92
+ self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False)
93
+
94
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
95
+ # breakpoint()
96
+ return self.adapter_scale * (self.linear(x) + self.adapter_bias)
97
+
98
+ def reset_parameters(self) -> None:
99
+ nn.init.zeros_(self.adapter_bias)
100
+ nn.init.ones_(self.adapter_scale)
101
+
102
+
103
+ class GPT(BaseModel, PreTrainedModel):
104
+ config_class=ConfigSMOE
105
+
106
+ def __init__(self, config: ConfigSMOE) -> None:
107
+ # Skip the parent class __init__ altogether and replace it to avoid useless allocations
108
+ nn.Module.__init__(self)
109
+ # super().__init__(config)
110
+ assert config.padded_vocab_size is not None
111
+ self.config = config
112
+ if config.use_smoe:
113
+ print("🐙 Run AdapterV2SMoE")
114
+ self.lm_head = AdapterV2SMoE(
115
+ in_features=config.n_embd,
116
+ out_features=config.padded_vocab_size,
117
+ num_experts=config.num_experts,
118
+ top_k=config.top_k,
119
+ bias=config.lm_head_bias
120
+ )
121
+ self.transformer = nn.ModuleDict(
122
+ dict(
123
+ wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
124
+ h=nn.ModuleList(BlockSMoE(config, i) for i in range(config.n_layer)),
125
+ ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
126
+ )
127
+ )
128
+ else:
129
+ print("🐙 Run AdapterV2Linear")
130
+ self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
131
+ self.transformer = nn.ModuleDict(
132
+ dict(
133
+ wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
134
+ h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)),
135
+ ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
136
+ )
137
+ )
138
+ self.max_seq_length = self.config.block_size
139
+ self.mask_cache: Optional[torch.Tensor] = None
140
+
141
+ def forward(
142
+ self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None, lm_head_chunk_size: int = 0
143
+ ) -> Union[torch.Tensor, List[torch.Tensor]]:
144
+ T = idx.size(1)
145
+ if self.max_seq_length < T:
146
+ raise ValueError(f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}.")
147
+
148
+ if input_pos is not None: # use the kv cache
149
+ cos = self.cos.index_select(0, input_pos)
150
+ sin = self.sin.index_select(0, input_pos)
151
+ if self.mask_cache is None:
152
+ raise TypeError("You need to call `gpt.set_kv_cache()`")
153
+ mask = self.mask_cache.index_select(2, input_pos)
154
+ else:
155
+ cos = self.cos[:T]
156
+ sin = self.sin[:T]
157
+ mask = None
158
+
159
+ x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
160
+ if self.config.scale_embeddings:
161
+ x = x * (self.config.n_embd**0.5)
162
+ for block in self.transformer.h:
163
+ x = block(x, cos, sin, mask, input_pos)
164
+ x = self.transformer.ln_f(x)
165
+ if self.config.use_smoe:
166
+ if lm_head_chunk_size > 0:
167
+ outputs = []
168
+ routers = []
169
+ for x_i in x.split(lm_head_chunk_size, dim = 1):
170
+ output, router = self.lm_head(x_i)
171
+ outputs.append(output)
172
+ routers.append(router)
173
+ return outputs, routers
174
+ output, router = self.lm_head(x)
175
+ return output, router #(b, t, vocab_size)
176
+ else:
177
+ if lm_head_chunk_size > 0:
178
+ # chunk the lm head logits to reduce the peak memory used by autograd
179
+ return [self.lm_head(x_i) for x_i in x.split(lm_head_chunk_size, dim=1)]
180
+ return self.lm_head(x) # (b, t, vocab_size)
181
+
182
+ @classmethod
183
+ def from_name(cls, name: str, **kwargs: Any) -> Self:
184
+ return cls(Config.from_name(name, **kwargs))
185
+
186
+ def _init_weights(self, module: nn.Module) -> None:
187
+ """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
188
+ super()._init_weights(module)
189
+ if isinstance(module, AdapterV2Linear):
190
+ module.reset_parameters()
191
+
192
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
193
+ """For compatibility with base checkpoints."""
194
+ mapping = {"lm_head.weight": "lm_head.linear.weight", "lm_head.bias": "lm_head.linear.bias"}
195
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
196
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
197
+
198
+
199
+ class Block(BaseBlock):
200
+ """The implementation is identical to `litgpt.model.Block` with the exception that
201
+ we replace the attention layer where adaption is implemented."""
202
+
203
+ def __init__(self, config: Config, block_idx: int) -> None:
204
+ # Skip the parent class __init__ altogether and replace it to avoid useless allocations
205
+ nn.Module.__init__(self)
206
+ self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
207
+ if config.use_smoe:
208
+ self.attn = CausalSelfAttentionSMoE(config, block_idx)
209
+ else:
210
+ self.attn = CausalSelfAttention(config, block_idx)
211
+ if not config.shared_attention_norm:
212
+ self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps)
213
+ self.mlp = config.mlp_class(config)
214
+
215
+ self.config = config
216
+
217
+ class BlockSMoE(Block):
218
+ def forward(
219
+ self,
220
+ x: torch.Tensor,
221
+ cos: torch.Tensor,
222
+ sin: torch.Tensor,
223
+ mask: Optional[torch.Tensor] = None,
224
+ input_pos: Optional[torch.Tensor] = None,
225
+ ) -> torch.Tensor:
226
+ x_normed = self.norm_1(x)
227
+ attention_output, _ = self.attn(x_normed, cos, sin, mask, input_pos)
228
+ if self.config.parallel_residual:
229
+ x_normed = x_normed if self.config.shared_attention_norm else self.norm_2(x)
230
+ x = self.mlp(x_normed) + attention_output + x
231
+ else:
232
+ x = attention_output + x
233
+ x = self.mlp(self.norm_2(x)) + x
234
+ return x
235
+
236
+
237
+ class CausalSelfAttention(BaseCausalSelfAttention):
238
+ """A modification of `litgpt.adapter.CausalSelfAttention` that uses the Adapter V2 Linear class"""
239
+
240
+ def __init__(self, config: Config, block_idx: int) -> None:
241
+ # Skip the parent class __init__ altogether and replace it to avoid useless allocations
242
+ nn.Module.__init__(self)
243
+ shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
244
+ # key, query, value projections for all heads, but in a batch
245
+ if config.use_smoe:
246
+ self.attn = AdapterV2SMoE(
247
+ in_features=config.n_embd,
248
+ out_features=shape,
249
+ num_experts=config.num_experts,
250
+ top_k=config.top_k,
251
+ bias=config.bias
252
+ )
253
+ # output projection
254
+ # if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
255
+ self.proj = AdapterV2SMoE(
256
+ in_features=config.head_size * config.n_head,
257
+ out_features=config.n_embd,
258
+ num_experts=config.num_experts,
259
+ top_k=config.top_k,
260
+ bias=config.bias
261
+ )
262
+ # disabled by default
263
+ else:
264
+ self.attn = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias)
265
+ # output projection
266
+ # if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
267
+ self.proj = AdapterV2Linear(config.head_size * config.n_head, config.n_embd, bias=config.bias)
268
+ # disabled by default
269
+ self.kv_cache: Optional[KVCache] = None
270
+
271
+ if block_idx >= config.adapter_start_layer:
272
+ # adapter embedding layer
273
+ self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
274
+ # gate for adaption
275
+ self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1))
276
+ # kv cache for inference
277
+ self.adapter_kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
278
+ self.block_idx = block_idx
279
+
280
+ self.config = config
281
+
282
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
283
+ """For compatibility with base checkpoints."""
284
+ mapping = {
285
+ "attn.weight": "attn.linear.weight",
286
+ "attn.bias": "attn.linear.bias",
287
+ "proj.weight": "proj.linear.weight",
288
+ "proj.bias": "proj.linear.bias",
289
+ }
290
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
291
+ # For compatibility with older checkpoints
292
+ if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
293
+ state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
294
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
295
+
296
+ class CausalSelfAttentionSMoE(CausalSelfAttention):
297
+ def forward(
298
+ self,
299
+ x: torch.Tensor,
300
+ cos: torch.Tensor,
301
+ sin: torch.Tensor,
302
+ mask: Optional[torch.Tensor] = None,
303
+ input_pos: Optional[torch.Tensor] = None,
304
+ ) -> torch.Tensor:
305
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
306
+
307
+ # breakpoint()
308
+ qkv, _ = self.attn(x)
309
+
310
+ # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
311
+ q_per_kv = self.config.n_head // self.config.n_query_groups
312
+ total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value
313
+ qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
314
+ qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs)
315
+
316
+ # split batched computation into three
317
+ q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)
318
+
319
+ # maybe repeat k and v if for the non multi-head attention cases
320
+ # training: flash attention requires it
321
+ # inference: multi-query would require a full kv cache so avoid it to limit its memory usage
322
+ if self.config.n_query_groups != self.config.n_head and (input_pos is None or self.config.n_query_groups != 1):
323
+ k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
324
+ v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
325
+
326
+ q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs)
327
+ k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs)
328
+ v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs)
329
+
330
+ q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
331
+ k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
332
+ q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
333
+ k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)
334
+
335
+ if input_pos is not None:
336
+ if not isinstance(self.kv_cache, KVCache):
337
+ raise TypeError("You need to call `gpt.set_kv_cache()`")
338
+ k, v = self.kv_cache(input_pos, k, v)
339
+
340
+ y = self.scaled_dot_product_attention(q, k, v, mask)
341
+
342
+ y = y.reshape(B, T, self.config.head_size * self.config.n_head) # re-assemble all head outputs side by side
343
+
344
+ # output projection
345
+ return self.proj(y)
346
+
347
+ class GptNeoxMLP(litgpt.model.GptNeoxMLP):
348
+ def __init__(self, config: Config) -> None:
349
+ nn.Module.__init__(self)
350
+ if config.use_smoe:
351
+ self.fc = AdapterV2SMoE(
352
+ in_features=config.n_embd,
353
+ out_features=config.intermediate_size,
354
+ num_experts=config.num_experts,
355
+ top_k=config.top_k,
356
+ bias=config.bias
357
+ )
358
+ # output projection
359
+ # if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
360
+ self.proj = AdapterV2SMoE(
361
+ in_features=config.intermediate_size,
362
+ out_features=config.n_embd,
363
+ num_experts=config.num_experts,
364
+ top_k=config.top_k,
365
+ bias=config.bias
366
+ )
367
+ else:
368
+ self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
369
+ self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)
370
+
371
+ self.config = config
372
+
373
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
374
+ """For compatibility with base checkpoints."""
375
+ mapping = {
376
+ "fc.weight": "fc.linear.weight",
377
+ "fc.bias": "fc.linear.bias",
378
+ "proj.weight": "proj.linear.weight",
379
+ "proj.bias": "proj.linear.bias",
380
+ }
381
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
382
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
383
+
384
+
385
+ class LLaMAMLP(litgpt.model.LLaMAMLP):
386
+ def __init__(self, config: Config) -> None:
387
+ nn.Module.__init__(self)
388
+ self.fc_1 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
389
+ self.fc_2 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
390
+ self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)
391
+
392
+ self.config = config
393
+
394
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
395
+ """For compatibility with base checkpoints."""
396
+ mapping = {
397
+ "fc_1.weight": "fc_1.linear.weight",
398
+ "fc_1.bias": "fc_1.linear.bias",
399
+ "fc_2.weight": "fc_2.linear.weight",
400
+ "fc_2.bias": "fc_2.linear.bias",
401
+ "proj.weight": "proj.linear.weight",
402
+ "proj.bias": "proj.linear.bias",
403
+ }
404
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
405
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
406
+
407
+
408
+ class GemmaMLP(LLaMAMLP):
409
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
410
+ x_fc_1 = self.fc_1(x)
411
+ x_fc_2 = self.fc_2(x)
412
+ x = torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate) * x_fc_2
413
+ return self.proj(x)
414
+
415
+
416
+ class LLaMAMoE(litgpt.model.LLaMAMoE):
417
+ def __init__(self, config: Config) -> None:
418
+ nn.Module.__init__(self)
419
+ self.gate = AdapterV2Linear(config.n_embd, config.n_expert, bias=False)
420
+ self.experts = nn.ModuleList(LLaMAMLP(config) for _ in range(config.n_expert))
421
+
422
+ self.config = config
423
+
424
+ def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
425
+ """For compatibility with base checkpoints."""
426
+ mapping = {"gate.weight": "gate.linear.weight"}
427
+ state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
428
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
429
+
430
+
431
+ def mark_only_adapter_v2_as_trainable(model: GPT) -> None:
432
+ """Sets requires_grad=False for all non-adapter weights"""
433
+ for name, param in model.named_parameters():
434
+ param.requires_grad = adapter_filter(name, param)
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha": 0,
3
+ "architectures": [
4
+ "GPT"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "adapter_v2.ConfigSMOE",
8
+ "AutoModelForCausalLM": "adapter_v2.GPT"
9
+ },
10
+ "bias": true,
11
+ "block_size": 2048,
12
+ "gelu_approximate": "tanh",
13
+ "head_size": 64,
14
+ "hf_config": {
15
+ "name": "phi-1_5",
16
+ "org": "microsoft"
17
+ },
18
+ "intermediate_size": 8192,
19
+ "lm_head_bias": true,
20
+ "mlp_class_name": "GptNeoxMLP",
21
+ "model_type": "gpt",
22
+ "n_embd": 2048,
23
+ "n_expert": 0,
24
+ "n_expert_per_token": 0,
25
+ "n_head": 32,
26
+ "n_layer": 24,
27
+ "n_query_groups": 32,
28
+ "name": "phi-1_5",
29
+ "norm_class_name": "LayerNorm",
30
+ "norm_eps": 1e-05,
31
+ "num_experts": 4,
32
+ "padded_vocab_size": 51200,
33
+ "padding_multiple": 512,
34
+ "parallel_residual": true,
35
+ "rope_base": 10000,
36
+ "rope_condense_ratio": 1,
37
+ "rope_n_elem": 32,
38
+ "rotary_percentage": 0.5,
39
+ "scale_embeddings": false,
40
+ "shared_attention_norm": true,
41
+ "top_k": 1,
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.41.2",
44
+ "use_smoe": false,
45
+ "vocab_size": 50257
46
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a57211c80a8771612eac4cbc47cd830df3580b8bde908741c29392281c1ccd82
3
+ size 4939652336
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dd013b6b6d6f20d991848aaa445e7c5c330e5f5176a57fff6f12af403c44269
3
+ size 739237520
model.safetensors.index.json ADDED
@@ -0,0 +1,490 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5678836480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.adapter_bias": "model-00001-of-00002.safetensors",
7
+ "lm_head.adapter_scale": "model-00001-of-00002.safetensors",
8
+ "lm_head.linear.bias": "model-00001-of-00002.safetensors",
9
+ "lm_head.linear.weight": "model-00001-of-00002.safetensors",
10
+ "transformer.h.0.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
11
+ "transformer.h.0.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
12
+ "transformer.h.0.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
13
+ "transformer.h.0.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
14
+ "transformer.h.0.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
15
+ "transformer.h.0.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
16
+ "transformer.h.0.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
17
+ "transformer.h.0.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
18
+ "transformer.h.0.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
19
+ "transformer.h.0.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
20
+ "transformer.h.0.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
21
+ "transformer.h.0.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
22
+ "transformer.h.0.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
23
+ "transformer.h.0.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
24
+ "transformer.h.0.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
25
+ "transformer.h.0.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
26
+ "transformer.h.0.norm_1.bias": "model-00001-of-00002.safetensors",
27
+ "transformer.h.0.norm_1.weight": "model-00001-of-00002.safetensors",
28
+ "transformer.h.1.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
29
+ "transformer.h.1.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
30
+ "transformer.h.1.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
31
+ "transformer.h.1.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
32
+ "transformer.h.1.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
33
+ "transformer.h.1.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
34
+ "transformer.h.1.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
35
+ "transformer.h.1.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
36
+ "transformer.h.1.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
37
+ "transformer.h.1.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
38
+ "transformer.h.1.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
39
+ "transformer.h.1.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
40
+ "transformer.h.1.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
41
+ "transformer.h.1.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
42
+ "transformer.h.1.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
43
+ "transformer.h.1.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
44
+ "transformer.h.1.norm_1.bias": "model-00001-of-00002.safetensors",
45
+ "transformer.h.1.norm_1.weight": "model-00001-of-00002.safetensors",
46
+ "transformer.h.10.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
47
+ "transformer.h.10.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
48
+ "transformer.h.10.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
49
+ "transformer.h.10.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
50
+ "transformer.h.10.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
51
+ "transformer.h.10.attn.gating_factor": "model-00001-of-00002.safetensors",
52
+ "transformer.h.10.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
53
+ "transformer.h.10.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
54
+ "transformer.h.10.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
55
+ "transformer.h.10.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
56
+ "transformer.h.10.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
57
+ "transformer.h.10.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
58
+ "transformer.h.10.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
59
+ "transformer.h.10.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
60
+ "transformer.h.10.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
61
+ "transformer.h.10.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
62
+ "transformer.h.10.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
63
+ "transformer.h.10.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
64
+ "transformer.h.10.norm_1.bias": "model-00001-of-00002.safetensors",
65
+ "transformer.h.10.norm_1.weight": "model-00001-of-00002.safetensors",
66
+ "transformer.h.11.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
67
+ "transformer.h.11.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
68
+ "transformer.h.11.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
69
+ "transformer.h.11.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
70
+ "transformer.h.11.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
71
+ "transformer.h.11.attn.gating_factor": "model-00001-of-00002.safetensors",
72
+ "transformer.h.11.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
73
+ "transformer.h.11.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
74
+ "transformer.h.11.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
75
+ "transformer.h.11.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
76
+ "transformer.h.11.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
77
+ "transformer.h.11.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
78
+ "transformer.h.11.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
79
+ "transformer.h.11.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
80
+ "transformer.h.11.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
81
+ "transformer.h.11.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
82
+ "transformer.h.11.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
83
+ "transformer.h.11.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
84
+ "transformer.h.11.norm_1.bias": "model-00001-of-00002.safetensors",
85
+ "transformer.h.11.norm_1.weight": "model-00001-of-00002.safetensors",
86
+ "transformer.h.12.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
87
+ "transformer.h.12.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
88
+ "transformer.h.12.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
89
+ "transformer.h.12.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
90
+ "transformer.h.12.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
91
+ "transformer.h.12.attn.gating_factor": "model-00001-of-00002.safetensors",
92
+ "transformer.h.12.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
93
+ "transformer.h.12.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
94
+ "transformer.h.12.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
95
+ "transformer.h.12.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
96
+ "transformer.h.12.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
97
+ "transformer.h.12.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
98
+ "transformer.h.12.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
99
+ "transformer.h.12.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
100
+ "transformer.h.12.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
101
+ "transformer.h.12.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
102
+ "transformer.h.12.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
103
+ "transformer.h.12.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
104
+ "transformer.h.12.norm_1.bias": "model-00001-of-00002.safetensors",
105
+ "transformer.h.12.norm_1.weight": "model-00001-of-00002.safetensors",
106
+ "transformer.h.13.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
107
+ "transformer.h.13.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
108
+ "transformer.h.13.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
109
+ "transformer.h.13.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
110
+ "transformer.h.13.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
111
+ "transformer.h.13.attn.gating_factor": "model-00001-of-00002.safetensors",
112
+ "transformer.h.13.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
113
+ "transformer.h.13.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
114
+ "transformer.h.13.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
115
+ "transformer.h.13.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
116
+ "transformer.h.13.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
117
+ "transformer.h.13.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
118
+ "transformer.h.13.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
119
+ "transformer.h.13.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
120
+ "transformer.h.13.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
121
+ "transformer.h.13.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
122
+ "transformer.h.13.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
123
+ "transformer.h.13.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
124
+ "transformer.h.13.norm_1.bias": "model-00001-of-00002.safetensors",
125
+ "transformer.h.13.norm_1.weight": "model-00001-of-00002.safetensors",
126
+ "transformer.h.14.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
127
+ "transformer.h.14.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
128
+ "transformer.h.14.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
129
+ "transformer.h.14.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
130
+ "transformer.h.14.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
131
+ "transformer.h.14.attn.gating_factor": "model-00001-of-00002.safetensors",
132
+ "transformer.h.14.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
133
+ "transformer.h.14.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
134
+ "transformer.h.14.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
135
+ "transformer.h.14.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
136
+ "transformer.h.14.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
137
+ "transformer.h.14.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
138
+ "transformer.h.14.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
139
+ "transformer.h.14.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
140
+ "transformer.h.14.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
141
+ "transformer.h.14.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
142
+ "transformer.h.14.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
143
+ "transformer.h.14.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
144
+ "transformer.h.14.norm_1.bias": "model-00001-of-00002.safetensors",
145
+ "transformer.h.14.norm_1.weight": "model-00001-of-00002.safetensors",
146
+ "transformer.h.15.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
147
+ "transformer.h.15.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
148
+ "transformer.h.15.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
149
+ "transformer.h.15.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
150
+ "transformer.h.15.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
151
+ "transformer.h.15.attn.gating_factor": "model-00001-of-00002.safetensors",
152
+ "transformer.h.15.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
153
+ "transformer.h.15.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
154
+ "transformer.h.15.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
155
+ "transformer.h.15.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
156
+ "transformer.h.15.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
157
+ "transformer.h.15.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
158
+ "transformer.h.15.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
159
+ "transformer.h.15.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
160
+ "transformer.h.15.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
161
+ "transformer.h.15.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
162
+ "transformer.h.15.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
163
+ "transformer.h.15.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
164
+ "transformer.h.15.norm_1.bias": "model-00001-of-00002.safetensors",
165
+ "transformer.h.15.norm_1.weight": "model-00001-of-00002.safetensors",
166
+ "transformer.h.16.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
167
+ "transformer.h.16.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
168
+ "transformer.h.16.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
169
+ "transformer.h.16.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
170
+ "transformer.h.16.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
171
+ "transformer.h.16.attn.gating_factor": "model-00001-of-00002.safetensors",
172
+ "transformer.h.16.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
173
+ "transformer.h.16.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
174
+ "transformer.h.16.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
175
+ "transformer.h.16.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
176
+ "transformer.h.16.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
177
+ "transformer.h.16.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
178
+ "transformer.h.16.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
179
+ "transformer.h.16.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
180
+ "transformer.h.16.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
181
+ "transformer.h.16.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
182
+ "transformer.h.16.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
183
+ "transformer.h.16.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
184
+ "transformer.h.16.norm_1.bias": "model-00001-of-00002.safetensors",
185
+ "transformer.h.16.norm_1.weight": "model-00001-of-00002.safetensors",
186
+ "transformer.h.17.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
187
+ "transformer.h.17.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
188
+ "transformer.h.17.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
189
+ "transformer.h.17.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
190
+ "transformer.h.17.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
191
+ "transformer.h.17.attn.gating_factor": "model-00001-of-00002.safetensors",
192
+ "transformer.h.17.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
193
+ "transformer.h.17.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
194
+ "transformer.h.17.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
195
+ "transformer.h.17.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
196
+ "transformer.h.17.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
197
+ "transformer.h.17.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
198
+ "transformer.h.17.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
199
+ "transformer.h.17.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
200
+ "transformer.h.17.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
201
+ "transformer.h.17.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
202
+ "transformer.h.17.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
203
+ "transformer.h.17.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
204
+ "transformer.h.17.norm_1.bias": "model-00001-of-00002.safetensors",
205
+ "transformer.h.17.norm_1.weight": "model-00001-of-00002.safetensors",
206
+ "transformer.h.18.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
207
+ "transformer.h.18.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
208
+ "transformer.h.18.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
209
+ "transformer.h.18.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
210
+ "transformer.h.18.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
211
+ "transformer.h.18.attn.gating_factor": "model-00001-of-00002.safetensors",
212
+ "transformer.h.18.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
213
+ "transformer.h.18.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
214
+ "transformer.h.18.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
215
+ "transformer.h.18.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
216
+ "transformer.h.18.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
217
+ "transformer.h.18.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
218
+ "transformer.h.18.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
219
+ "transformer.h.18.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
220
+ "transformer.h.18.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
221
+ "transformer.h.18.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
222
+ "transformer.h.18.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
223
+ "transformer.h.18.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
224
+ "transformer.h.18.norm_1.bias": "model-00001-of-00002.safetensors",
225
+ "transformer.h.18.norm_1.weight": "model-00001-of-00002.safetensors",
226
+ "transformer.h.19.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
227
+ "transformer.h.19.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
228
+ "transformer.h.19.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
229
+ "transformer.h.19.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
230
+ "transformer.h.19.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
231
+ "transformer.h.19.attn.gating_factor": "model-00001-of-00002.safetensors",
232
+ "transformer.h.19.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
233
+ "transformer.h.19.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
234
+ "transformer.h.19.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
235
+ "transformer.h.19.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
236
+ "transformer.h.19.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
237
+ "transformer.h.19.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
238
+ "transformer.h.19.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
239
+ "transformer.h.19.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
240
+ "transformer.h.19.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
241
+ "transformer.h.19.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
242
+ "transformer.h.19.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
243
+ "transformer.h.19.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
244
+ "transformer.h.19.norm_1.bias": "model-00001-of-00002.safetensors",
245
+ "transformer.h.19.norm_1.weight": "model-00001-of-00002.safetensors",
246
+ "transformer.h.2.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
247
+ "transformer.h.2.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
248
+ "transformer.h.2.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
249
+ "transformer.h.2.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
250
+ "transformer.h.2.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
251
+ "transformer.h.2.attn.gating_factor": "model-00001-of-00002.safetensors",
252
+ "transformer.h.2.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
253
+ "transformer.h.2.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
254
+ "transformer.h.2.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
255
+ "transformer.h.2.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
256
+ "transformer.h.2.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
257
+ "transformer.h.2.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
258
+ "transformer.h.2.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
259
+ "transformer.h.2.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
260
+ "transformer.h.2.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
261
+ "transformer.h.2.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
262
+ "transformer.h.2.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
263
+ "transformer.h.2.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
264
+ "transformer.h.2.norm_1.bias": "model-00001-of-00002.safetensors",
265
+ "transformer.h.2.norm_1.weight": "model-00001-of-00002.safetensors",
266
+ "transformer.h.20.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
267
+ "transformer.h.20.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
268
+ "transformer.h.20.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
269
+ "transformer.h.20.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
270
+ "transformer.h.20.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
271
+ "transformer.h.20.attn.gating_factor": "model-00001-of-00002.safetensors",
272
+ "transformer.h.20.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
273
+ "transformer.h.20.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
274
+ "transformer.h.20.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
275
+ "transformer.h.20.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
276
+ "transformer.h.20.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
277
+ "transformer.h.20.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
278
+ "transformer.h.20.mlp.fc.linear.bias": "model-00002-of-00002.safetensors",
279
+ "transformer.h.20.mlp.fc.linear.weight": "model-00002-of-00002.safetensors",
280
+ "transformer.h.20.mlp.proj.adapter_bias": "model-00002-of-00002.safetensors",
281
+ "transformer.h.20.mlp.proj.adapter_scale": "model-00002-of-00002.safetensors",
282
+ "transformer.h.20.mlp.proj.linear.bias": "model-00002-of-00002.safetensors",
283
+ "transformer.h.20.mlp.proj.linear.weight": "model-00002-of-00002.safetensors",
284
+ "transformer.h.20.norm_1.bias": "model-00001-of-00002.safetensors",
285
+ "transformer.h.20.norm_1.weight": "model-00001-of-00002.safetensors",
286
+ "transformer.h.21.attn.adapter_wte.weight": "model-00002-of-00002.safetensors",
287
+ "transformer.h.21.attn.attn.adapter_bias": "model-00002-of-00002.safetensors",
288
+ "transformer.h.21.attn.attn.adapter_scale": "model-00002-of-00002.safetensors",
289
+ "transformer.h.21.attn.attn.linear.bias": "model-00002-of-00002.safetensors",
290
+ "transformer.h.21.attn.attn.linear.weight": "model-00002-of-00002.safetensors",
291
+ "transformer.h.21.attn.gating_factor": "model-00002-of-00002.safetensors",
292
+ "transformer.h.21.attn.proj.adapter_bias": "model-00002-of-00002.safetensors",
293
+ "transformer.h.21.attn.proj.adapter_scale": "model-00002-of-00002.safetensors",
294
+ "transformer.h.21.attn.proj.linear.bias": "model-00002-of-00002.safetensors",
295
+ "transformer.h.21.attn.proj.linear.weight": "model-00002-of-00002.safetensors",
296
+ "transformer.h.21.mlp.fc.adapter_bias": "model-00002-of-00002.safetensors",
297
+ "transformer.h.21.mlp.fc.adapter_scale": "model-00002-of-00002.safetensors",
298
+ "transformer.h.21.mlp.fc.linear.bias": "model-00002-of-00002.safetensors",
299
+ "transformer.h.21.mlp.fc.linear.weight": "model-00002-of-00002.safetensors",
300
+ "transformer.h.21.mlp.proj.adapter_bias": "model-00002-of-00002.safetensors",
301
+ "transformer.h.21.mlp.proj.adapter_scale": "model-00002-of-00002.safetensors",
302
+ "transformer.h.21.mlp.proj.linear.bias": "model-00002-of-00002.safetensors",
303
+ "transformer.h.21.mlp.proj.linear.weight": "model-00002-of-00002.safetensors",
304
+ "transformer.h.21.norm_1.bias": "model-00002-of-00002.safetensors",
305
+ "transformer.h.21.norm_1.weight": "model-00002-of-00002.safetensors",
306
+ "transformer.h.22.attn.adapter_wte.weight": "model-00002-of-00002.safetensors",
307
+ "transformer.h.22.attn.attn.adapter_bias": "model-00002-of-00002.safetensors",
308
+ "transformer.h.22.attn.attn.adapter_scale": "model-00002-of-00002.safetensors",
309
+ "transformer.h.22.attn.attn.linear.bias": "model-00002-of-00002.safetensors",
310
+ "transformer.h.22.attn.attn.linear.weight": "model-00002-of-00002.safetensors",
311
+ "transformer.h.22.attn.gating_factor": "model-00002-of-00002.safetensors",
312
+ "transformer.h.22.attn.proj.adapter_bias": "model-00002-of-00002.safetensors",
313
+ "transformer.h.22.attn.proj.adapter_scale": "model-00002-of-00002.safetensors",
314
+ "transformer.h.22.attn.proj.linear.bias": "model-00002-of-00002.safetensors",
315
+ "transformer.h.22.attn.proj.linear.weight": "model-00002-of-00002.safetensors",
316
+ "transformer.h.22.mlp.fc.adapter_bias": "model-00002-of-00002.safetensors",
317
+ "transformer.h.22.mlp.fc.adapter_scale": "model-00002-of-00002.safetensors",
318
+ "transformer.h.22.mlp.fc.linear.bias": "model-00002-of-00002.safetensors",
319
+ "transformer.h.22.mlp.fc.linear.weight": "model-00002-of-00002.safetensors",
320
+ "transformer.h.22.mlp.proj.adapter_bias": "model-00002-of-00002.safetensors",
321
+ "transformer.h.22.mlp.proj.adapter_scale": "model-00002-of-00002.safetensors",
322
+ "transformer.h.22.mlp.proj.linear.bias": "model-00002-of-00002.safetensors",
323
+ "transformer.h.22.mlp.proj.linear.weight": "model-00002-of-00002.safetensors",
324
+ "transformer.h.22.norm_1.bias": "model-00002-of-00002.safetensors",
325
+ "transformer.h.22.norm_1.weight": "model-00002-of-00002.safetensors",
326
+ "transformer.h.23.attn.adapter_wte.weight": "model-00002-of-00002.safetensors",
327
+ "transformer.h.23.attn.attn.adapter_bias": "model-00002-of-00002.safetensors",
328
+ "transformer.h.23.attn.attn.adapter_scale": "model-00002-of-00002.safetensors",
329
+ "transformer.h.23.attn.attn.linear.bias": "model-00002-of-00002.safetensors",
330
+ "transformer.h.23.attn.attn.linear.weight": "model-00002-of-00002.safetensors",
331
+ "transformer.h.23.attn.gating_factor": "model-00002-of-00002.safetensors",
332
+ "transformer.h.23.attn.proj.adapter_bias": "model-00002-of-00002.safetensors",
333
+ "transformer.h.23.attn.proj.adapter_scale": "model-00002-of-00002.safetensors",
334
+ "transformer.h.23.attn.proj.linear.bias": "model-00002-of-00002.safetensors",
335
+ "transformer.h.23.attn.proj.linear.weight": "model-00002-of-00002.safetensors",
336
+ "transformer.h.23.mlp.fc.adapter_bias": "model-00002-of-00002.safetensors",
337
+ "transformer.h.23.mlp.fc.adapter_scale": "model-00002-of-00002.safetensors",
338
+ "transformer.h.23.mlp.fc.linear.bias": "model-00002-of-00002.safetensors",
339
+ "transformer.h.23.mlp.fc.linear.weight": "model-00002-of-00002.safetensors",
340
+ "transformer.h.23.mlp.proj.adapter_bias": "model-00002-of-00002.safetensors",
341
+ "transformer.h.23.mlp.proj.adapter_scale": "model-00002-of-00002.safetensors",
342
+ "transformer.h.23.mlp.proj.linear.bias": "model-00002-of-00002.safetensors",
343
+ "transformer.h.23.mlp.proj.linear.weight": "model-00002-of-00002.safetensors",
344
+ "transformer.h.23.norm_1.bias": "model-00002-of-00002.safetensors",
345
+ "transformer.h.23.norm_1.weight": "model-00002-of-00002.safetensors",
346
+ "transformer.h.3.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
347
+ "transformer.h.3.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
348
+ "transformer.h.3.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
349
+ "transformer.h.3.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
350
+ "transformer.h.3.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
351
+ "transformer.h.3.attn.gating_factor": "model-00001-of-00002.safetensors",
352
+ "transformer.h.3.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
353
+ "transformer.h.3.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
354
+ "transformer.h.3.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
355
+ "transformer.h.3.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
356
+ "transformer.h.3.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
357
+ "transformer.h.3.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
358
+ "transformer.h.3.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
359
+ "transformer.h.3.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
360
+ "transformer.h.3.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
361
+ "transformer.h.3.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
362
+ "transformer.h.3.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
363
+ "transformer.h.3.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
364
+ "transformer.h.3.norm_1.bias": "model-00001-of-00002.safetensors",
365
+ "transformer.h.3.norm_1.weight": "model-00001-of-00002.safetensors",
366
+ "transformer.h.4.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
367
+ "transformer.h.4.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
368
+ "transformer.h.4.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
369
+ "transformer.h.4.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
370
+ "transformer.h.4.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
371
+ "transformer.h.4.attn.gating_factor": "model-00001-of-00002.safetensors",
372
+ "transformer.h.4.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
373
+ "transformer.h.4.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
374
+ "transformer.h.4.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
375
+ "transformer.h.4.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
376
+ "transformer.h.4.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
377
+ "transformer.h.4.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
378
+ "transformer.h.4.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
379
+ "transformer.h.4.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
380
+ "transformer.h.4.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
381
+ "transformer.h.4.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
382
+ "transformer.h.4.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
383
+ "transformer.h.4.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
384
+ "transformer.h.4.norm_1.bias": "model-00001-of-00002.safetensors",
385
+ "transformer.h.4.norm_1.weight": "model-00001-of-00002.safetensors",
386
+ "transformer.h.5.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
387
+ "transformer.h.5.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
388
+ "transformer.h.5.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
389
+ "transformer.h.5.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
390
+ "transformer.h.5.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
391
+ "transformer.h.5.attn.gating_factor": "model-00001-of-00002.safetensors",
392
+ "transformer.h.5.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
393
+ "transformer.h.5.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
394
+ "transformer.h.5.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
395
+ "transformer.h.5.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
396
+ "transformer.h.5.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
397
+ "transformer.h.5.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
398
+ "transformer.h.5.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
399
+ "transformer.h.5.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
400
+ "transformer.h.5.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
401
+ "transformer.h.5.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
402
+ "transformer.h.5.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
403
+ "transformer.h.5.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
404
+ "transformer.h.5.norm_1.bias": "model-00001-of-00002.safetensors",
405
+ "transformer.h.5.norm_1.weight": "model-00001-of-00002.safetensors",
406
+ "transformer.h.6.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
407
+ "transformer.h.6.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
408
+ "transformer.h.6.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
409
+ "transformer.h.6.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
410
+ "transformer.h.6.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
411
+ "transformer.h.6.attn.gating_factor": "model-00001-of-00002.safetensors",
412
+ "transformer.h.6.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
413
+ "transformer.h.6.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
414
+ "transformer.h.6.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
415
+ "transformer.h.6.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
416
+ "transformer.h.6.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
417
+ "transformer.h.6.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
418
+ "transformer.h.6.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
419
+ "transformer.h.6.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
420
+ "transformer.h.6.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
421
+ "transformer.h.6.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
422
+ "transformer.h.6.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
423
+ "transformer.h.6.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
424
+ "transformer.h.6.norm_1.bias": "model-00001-of-00002.safetensors",
425
+ "transformer.h.6.norm_1.weight": "model-00001-of-00002.safetensors",
426
+ "transformer.h.7.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
427
+ "transformer.h.7.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
428
+ "transformer.h.7.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
429
+ "transformer.h.7.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
430
+ "transformer.h.7.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
431
+ "transformer.h.7.attn.gating_factor": "model-00001-of-00002.safetensors",
432
+ "transformer.h.7.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
433
+ "transformer.h.7.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
434
+ "transformer.h.7.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
435
+ "transformer.h.7.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
436
+ "transformer.h.7.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
437
+ "transformer.h.7.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
438
+ "transformer.h.7.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
439
+ "transformer.h.7.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
440
+ "transformer.h.7.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
441
+ "transformer.h.7.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
442
+ "transformer.h.7.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
443
+ "transformer.h.7.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
444
+ "transformer.h.7.norm_1.bias": "model-00001-of-00002.safetensors",
445
+ "transformer.h.7.norm_1.weight": "model-00001-of-00002.safetensors",
446
+ "transformer.h.8.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
447
+ "transformer.h.8.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
448
+ "transformer.h.8.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
449
+ "transformer.h.8.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
450
+ "transformer.h.8.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
451
+ "transformer.h.8.attn.gating_factor": "model-00001-of-00002.safetensors",
452
+ "transformer.h.8.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
453
+ "transformer.h.8.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
454
+ "transformer.h.8.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
455
+ "transformer.h.8.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
456
+ "transformer.h.8.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
457
+ "transformer.h.8.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
458
+ "transformer.h.8.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
459
+ "transformer.h.8.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
460
+ "transformer.h.8.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
461
+ "transformer.h.8.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
462
+ "transformer.h.8.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
463
+ "transformer.h.8.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
464
+ "transformer.h.8.norm_1.bias": "model-00001-of-00002.safetensors",
465
+ "transformer.h.8.norm_1.weight": "model-00001-of-00002.safetensors",
466
+ "transformer.h.9.attn.adapter_wte.weight": "model-00001-of-00002.safetensors",
467
+ "transformer.h.9.attn.attn.adapter_bias": "model-00001-of-00002.safetensors",
468
+ "transformer.h.9.attn.attn.adapter_scale": "model-00001-of-00002.safetensors",
469
+ "transformer.h.9.attn.attn.linear.bias": "model-00001-of-00002.safetensors",
470
+ "transformer.h.9.attn.attn.linear.weight": "model-00001-of-00002.safetensors",
471
+ "transformer.h.9.attn.gating_factor": "model-00001-of-00002.safetensors",
472
+ "transformer.h.9.attn.proj.adapter_bias": "model-00001-of-00002.safetensors",
473
+ "transformer.h.9.attn.proj.adapter_scale": "model-00001-of-00002.safetensors",
474
+ "transformer.h.9.attn.proj.linear.bias": "model-00001-of-00002.safetensors",
475
+ "transformer.h.9.attn.proj.linear.weight": "model-00001-of-00002.safetensors",
476
+ "transformer.h.9.mlp.fc.adapter_bias": "model-00001-of-00002.safetensors",
477
+ "transformer.h.9.mlp.fc.adapter_scale": "model-00001-of-00002.safetensors",
478
+ "transformer.h.9.mlp.fc.linear.bias": "model-00001-of-00002.safetensors",
479
+ "transformer.h.9.mlp.fc.linear.weight": "model-00001-of-00002.safetensors",
480
+ "transformer.h.9.mlp.proj.adapter_bias": "model-00001-of-00002.safetensors",
481
+ "transformer.h.9.mlp.proj.adapter_scale": "model-00001-of-00002.safetensors",
482
+ "transformer.h.9.mlp.proj.linear.bias": "model-00001-of-00002.safetensors",
483
+ "transformer.h.9.mlp.proj.linear.weight": "model-00001-of-00002.safetensors",
484
+ "transformer.h.9.norm_1.bias": "model-00001-of-00002.safetensors",
485
+ "transformer.h.9.norm_1.weight": "model-00001-of-00002.safetensors",
486
+ "transformer.ln_f.bias": "model-00002-of-00002.safetensors",
487
+ "transformer.ln_f.weight": "model-00002-of-00002.safetensors",
488
+ "transformer.wte.weight": "model-00001-of-00002.safetensors"
489
+ }
490
+ }