File size: 2,967 Bytes
2d36e29
 
 
 
 
124f144
2d36e29
 
 
 
 
 
 
 
 
 
de7fd94
3a21d2e
 
2d36e29
8f4d5fb
fae0db4
a7a741b
 
 
 
 
 
 
 
 
2d36e29
add97f9
 
 
 
3f99cf0
add97f9
4c53a06
11b9565
4c53a06
 
11b9565
4c53a06
 
11b9565
4c53a06
 
11b9565
4c53a06
 
11b9565
4c53a06
 
11b9565
4c53a06
 
11b9565
4c53a06
 
11b9565
4c53a06
 
11b9565
add97f9
2d36e29
3a21d2e
2d36e29
 
3a21d2e
 
2d36e29
 
 
 
361b516
2d36e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124f144
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
- image-classification
metrics:
- accuracy
model-index:
- name: fashion-clothing-decade
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Fashion Clothing Decade
This model predicts what decade clothing is from. It takes an image and outputs one of the following labels: 
**1910s, 1920s, 1930s, 1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s**

Try the [demo](https://huggingface.co/spaces/tonyassi/Which-decade-are-you-from)!

### How to use
```python
from transformers import pipeline

pipe = pipeline("image-classification", model="tonyassi/fashion-clothing-decade")
result = pipe('image.png')

print(result)
```

## Dataset
Trained on a total of 2500 images. ~250 images from each label.

### 1910s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/zdb7EyuVxp1ncGrkoAT7h.jpeg)

### 1920s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/GGM1mMwezbsfPg2dKIvvd.jpeg)

### 1930s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/rDcMdiH3q7UHtQcfSLYzn.jpeg)

### 1940s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/TpDsDnXMubqvfu8dn6nNA.jpeg)

### 1950s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/lpMCJ9PfolWjhFqb81D1w.jpeg)

### 1960s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/x0FOiI2IMtHXthCafa76t.jpeg)

### 1970s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/H45UJGv9lzXlxF_Z616Cj.jpeg)

### 1980s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/74d7kg69pRFDrv1QjTt9G.jpeg)

### 1990s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/FZ__rQWiIAZN_1q1eOaNJ.jpeg)

### 2000s
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/h81edMfzSYnWBxb7ZVliB.jpeg)

## Model description
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).

## Training and evaluation data
- Loss: 0.8707
- Accuracy: 0.7505

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1