File size: 2,072 Bytes
2d36e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fashion-clothing-decade
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fashion-clothing-decade
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8451
- Accuracy: 0.7485
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9496 | 0.98 | 31 | 1.1401 | 0.6766 |
| 0.7981 | 2.0 | 63 | 1.0490 | 0.6926 |
| 0.6665 | 2.98 | 94 | 1.0096 | 0.6766 |
| 0.5422 | 4.0 | 126 | 0.9923 | 0.6886 |
| 0.4987 | 4.98 | 157 | 0.9207 | 0.7285 |
| 0.447 | 6.0 | 189 | 0.9480 | 0.6866 |
| 0.3892 | 6.98 | 220 | 0.9274 | 0.7026 |
| 0.3632 | 8.0 | 252 | 0.8786 | 0.7445 |
| 0.3886 | 8.98 | 283 | 0.8331 | 0.7645 |
| 0.3778 | 9.84 | 310 | 0.8451 | 0.7485 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|