--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: fashion-clothing-decade results: [] --- # Fashion Clothing Decade This model predicts what decade clothing is from. It takes an image and outputs one of the following labels: **1910s, 1920s, 1930s, 1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s** ### How to use ```python from transformers import pipeline pipe = pipeline("image-classification", model="tonyassi/fashion-clothing-decade") result = pipe('image.png') print(result) ``` ## Dataset Trained on a total of 2500 images. ~250 images from each label. ### 1910s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750000296145007/1910s.jpg?ex=656516df&is=6552a1df&hm=f954aea989d10b43e1c70d827988845cebbb2138a2ea795c5288119beeaf9f95&) ### 1920s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750014078636052/1920s.jpg?ex=656516e2&is=6552a1e2&hm=23622ffb6b0860e3e6e22e1cb2436f8058db9a3295ecba3a4ed321ce9fe51bbf&) ### 1930s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750026640572486/1930s.jpg?ex=656516e5&is=6552a1e5&hm=26d536e7b37c3ed09c023f1dfe826a067ce17fdf0691e6ba7d66a0021cfd6326&) ### 1940s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750038753706034/1940s.jpg?ex=656516e8&is=6552a1e8&hm=29340af7325e42b3de6f51277cd12135487aa7a507f9cada6f49226add4741e3&) ### 1950s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750050346782752/1950s.jpg?ex=656516eb&is=6552a1eb&hm=ca8c332c46f25ec0418709ae1efe8bb214904058ea3c687bda95c751b8ce07ec&) ### 1960s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750067967054005/1960s.jpeg?ex=656516ef&is=6552a1ef&hm=df33b8fa2c63c6994c48571871d5c5e80b4ad413abcbed166f4a6b5b13d4a7c1&) ### 1970s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750075793625240/1970s.jpg?ex=656516f1&is=6552a1f1&hm=a5f83085adcb97a1cc95d6621c0e25551d20110fe5a29aa6053fa8ee8177047a&) ### 1980s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750090263973888/1980s.jpeg?ex=656516f4&is=6552a1f4&hm=ea80189337e909097aaf297168d7d12a99ac170848bfbd31040e043ab481ca82&) ### 1990s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750101764747435/1990s.jpg?ex=656516f7&is=6552a1f7&hm=bbdca6de615c3a130ec05e32f880e76b4f7aeea449192ccfc0fd6193e2bdde5f&) ### 2000s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750101764747435/1990s.jpg?ex=656516f7&is=6552a1f7&hm=bbdca6de615c3a130ec05e32f880e76b4f7aeea449192ccfc0fd6193e2bdde5f&) ## Model description This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). ## Training and evaluation data - Loss: 0.8707 - Accuracy: 0.7505 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1