--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer - image-classification metrics: - accuracy model-index: - name: fashion-clothing-decade results: [] --- # Fashion Clothing Decade This model predicts what decade clothing is from. It takes an image and outputs one of the following labels: **1910s, 1920s, 1930s, 1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s** Try the [demo](https://huggingface.co/spaces/tonyassi/Which-decade-are-you-from)! ### How to use ```python from transformers import pipeline pipe = pipeline("image-classification", model="tonyassi/fashion-clothing-decade") result = pipe('image.png') print(result) ``` ## Dataset Trained on a total of 2500 images. ~250 images from each label. ### 1910s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/zdb7EyuVxp1ncGrkoAT7h.jpeg) ### 1920s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/GGM1mMwezbsfPg2dKIvvd.jpeg) ### 1930s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/rDcMdiH3q7UHtQcfSLYzn.jpeg) ### 1940s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/TpDsDnXMubqvfu8dn6nNA.jpeg) ### 1950s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/lpMCJ9PfolWjhFqb81D1w.jpeg) ### 1960s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/x0FOiI2IMtHXthCafa76t.jpeg) ### 1970s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/H45UJGv9lzXlxF_Z616Cj.jpeg) ### 1980s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/74d7kg69pRFDrv1QjTt9G.jpeg) ### 1990s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/FZ__rQWiIAZN_1q1eOaNJ.jpeg) ### 2000s ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/h81edMfzSYnWBxb7ZVliB.jpeg) ## Model description This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). ## Training and evaluation data - Loss: 0.8707 - Accuracy: 0.7505 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1