--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: fashion-clothing-decade results: [] --- # Fashion Clothing Decade This model predicts what decade clothing is from. It takes an image and outputs one of the following labels: **1910s, 1920s, 1930s, 1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s** ### How to use ```python from transformers import pipeline pipe = pipeline("image-classification", model="tonyassi/fashion-clothing-decade") result = pipe('image.png') print(result) ``` ## Dataset Trained on a total of 2500 images. ~250 images from each label. ### 1910s ![](https://cdn.discordapp.com/attachments/1120417968032063538/1173750000296145007/1910s.jpg?ex=656516df&is=6552a1df&hm=f954aea989d10b43e1c70d827988845cebbb2138a2ea795c5288119beeaf9f95&) ## Model description This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). ## Training and evaluation data - Loss: 0.8707 - Accuracy: 0.7505 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1