Upload folder using huggingface_hub
Browse files- README.md +108 -0
- metadata.json +8 -0
- model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +344 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224
|
4 |
+
tags:
|
5 |
+
- Image Regression
|
6 |
+
datasets:
|
7 |
+
- "tonyassi/tony__assi-ig-ds5"
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: "tony__assi-ig-prediction"
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
# tony__assi-ig-prediction
|
16 |
+
## IG Prediction
|
17 |
+
|
18 |
+
This model was trained with [IGPrediction](https://github.com/TonyAssi/IGPrediction). It predicts how many likes an image will get.
|
19 |
+
|
20 |
+
```python
|
21 |
+
from IGPredict import predict_ig
|
22 |
+
predict_ig(repo_id='tonyassi/tony__assi-ig-prediction',image_path='image.jpg')
|
23 |
+
```
|
24 |
+
|
25 |
+
---
|
26 |
+
|
27 |
+
## Dataset
|
28 |
+
Dataset: tonyassi/tony__assi-ig-ds5\
|
29 |
+
Value Column:\
|
30 |
+
Train Test Split: 0.2
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
## Training
|
35 |
+
Base Model: [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)\
|
36 |
+
Epochs: 20\
|
37 |
+
Learning Rate: 0.0001
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
### Download
|
44 |
+
```bash
|
45 |
+
git clone https://github.com/TonyAssi/IGPrediction.git
|
46 |
+
cd IGPrediction
|
47 |
+
```
|
48 |
+
|
49 |
+
### Installation
|
50 |
+
```bash
|
51 |
+
pip install -r requirements.txt
|
52 |
+
```
|
53 |
+
|
54 |
+
### Import
|
55 |
+
```python
|
56 |
+
from IGPredict import ig_download, upload_dataset, train_ig_model, upload_ig_model, predict_ig
|
57 |
+
```
|
58 |
+
|
59 |
+
### Download Instagram Images
|
60 |
+
- **username** Instagram username
|
61 |
+
- **num_images** maximum number of images to download
|
62 |
+
```python
|
63 |
+
ig_download(username='instagarm_username', num_images=100)
|
64 |
+
```
|
65 |
+
Instagram images will be downloaded to *'./images'* folder, each one named like so *"index-likes.jpg"*. E.g. *"3-17.jpg"* is the third image and has 17 likes.
|
66 |
+
|
67 |
+
### Upload Dataset
|
68 |
+
- **dataset_name** name of dataset to be uploaded
|
69 |
+
- **token** go [here](https://huggingface.co/settings/tokens) to create a new 🤗 token
|
70 |
+
```python
|
71 |
+
upload_dataset(dataset_name='tonyassi/tony__assi-ig-ds5', token='YOUR_HF_TOKEN')
|
72 |
+
```
|
73 |
+
Go to your 🤗 profile to find your uploaded dataset, it should look similar to [tonyassi/tony__assi-ig-ds](https://huggingface.co/datasets/tonyassi/tony__assi-ig-ds).
|
74 |
+
|
75 |
+
|
76 |
+
### Train Model
|
77 |
+
- **dataset_id** 🤗 dataset id
|
78 |
+
- **test_split** test split of the train/test split
|
79 |
+
- **num_train_epochs** training epochs
|
80 |
+
- **learning_rate** learning rate
|
81 |
+
```python
|
82 |
+
train_ig_model(dataset_id='tonyassi/tony__assi-ig-ds5',
|
83 |
+
test_split=0.2,
|
84 |
+
num_train_epochs=20,
|
85 |
+
learning_rate=0.0001)
|
86 |
+
|
87 |
+
```
|
88 |
+
The trainer will save the checkpoints in the 'results' folder. The model.safetensors are the trained weights you'll use for inference (predicton).
|
89 |
+
|
90 |
+
### Upload Model
|
91 |
+
This function will upload your model to the 🤗 Hub.
|
92 |
+
- **model_id** the name of the model id
|
93 |
+
- **token** go [here](https://huggingface.co/settings/tokens) to create a new 🤗 token
|
94 |
+
- **checkpoint_dir** checkpoint folder that will be uploaded
|
95 |
+
```python
|
96 |
+
upload_ig_model(model_id='tony__assi-ig-prediction',
|
97 |
+
token='YOUR_HF_TOKEN',
|
98 |
+
checkpoint_dir='./results/checkpoint-940')
|
99 |
+
```
|
100 |
+
|
101 |
+
### Inference (Prediction)
|
102 |
+
- **repo_id** 🤗 repo id of the model
|
103 |
+
- **image_path** path to image
|
104 |
+
```python
|
105 |
+
predict_ig(repo_id='tonyassi/tony__assi-ig-prediction',
|
106 |
+
image_path='image.jpg')
|
107 |
+
```
|
108 |
+
The first time this function is called it'll download the safetensor model. Subsequent function calls will run faster.
|
metadata.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_id": "tonyassi/tony__assi-ig-ds5",
|
3 |
+
"value_column_name": "likes",
|
4 |
+
"test_split": 0.2,
|
5 |
+
"num_train_epochs": 20,
|
6 |
+
"learning_rate": 0.0001,
|
7 |
+
"max_value": 106
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4636e1e50f250102ea55feb997a3c4546b2cc0e6e5b9dfba805daa70b7943930
|
3 |
+
size 345583444
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98f28ea68580bb2d79b75424d7f9c685bcbad07a26d694fb34e07d71219d9d01
|
3 |
+
size 686557178
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8098b3ea1099554a17a75b08e08b0801f551831d4783349401defb321e1c1c1d
|
3 |
+
size 13990
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce9ba9b1a5074d53eac331e90e43eb33ff190d28330a99d48dfa5f8761916744
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 20.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"grad_norm": 8.472058296203613,
|
14 |
+
"learning_rate": 9.5e-05,
|
15 |
+
"loss": 0.2548,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"eval_loss": 0.20547232031822205,
|
21 |
+
"eval_mse": 0.20547235012054443,
|
22 |
+
"eval_runtime": 1.3582,
|
23 |
+
"eval_samples_per_second": 14.725,
|
24 |
+
"eval_steps_per_second": 2.209,
|
25 |
+
"step": 10
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 2.0,
|
29 |
+
"grad_norm": 16.11898422241211,
|
30 |
+
"learning_rate": 9e-05,
|
31 |
+
"loss": 0.4596,
|
32 |
+
"step": 20
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 2.0,
|
36 |
+
"eval_loss": 0.10995284467935562,
|
37 |
+
"eval_mse": 0.10995285212993622,
|
38 |
+
"eval_runtime": 0.9281,
|
39 |
+
"eval_samples_per_second": 21.551,
|
40 |
+
"eval_steps_per_second": 3.233,
|
41 |
+
"step": 20
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 3.0,
|
45 |
+
"grad_norm": 6.556423187255859,
|
46 |
+
"learning_rate": 8.5e-05,
|
47 |
+
"loss": 0.0866,
|
48 |
+
"step": 30
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 3.0,
|
52 |
+
"eval_loss": 0.12321324646472931,
|
53 |
+
"eval_mse": 0.12321324646472931,
|
54 |
+
"eval_runtime": 0.8771,
|
55 |
+
"eval_samples_per_second": 22.803,
|
56 |
+
"eval_steps_per_second": 3.42,
|
57 |
+
"step": 30
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 4.0,
|
61 |
+
"grad_norm": 10.101408958435059,
|
62 |
+
"learning_rate": 8e-05,
|
63 |
+
"loss": 0.0741,
|
64 |
+
"step": 40
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 4.0,
|
68 |
+
"eval_loss": 0.055902622640132904,
|
69 |
+
"eval_mse": 0.05590261146426201,
|
70 |
+
"eval_runtime": 0.8907,
|
71 |
+
"eval_samples_per_second": 22.455,
|
72 |
+
"eval_steps_per_second": 3.368,
|
73 |
+
"step": 40
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 5.0,
|
77 |
+
"grad_norm": 0.8052617311477661,
|
78 |
+
"learning_rate": 7.500000000000001e-05,
|
79 |
+
"loss": 0.0471,
|
80 |
+
"step": 50
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 5.0,
|
84 |
+
"eval_loss": 0.033162668347358704,
|
85 |
+
"eval_mse": 0.033162668347358704,
|
86 |
+
"eval_runtime": 0.8798,
|
87 |
+
"eval_samples_per_second": 22.732,
|
88 |
+
"eval_steps_per_second": 3.41,
|
89 |
+
"step": 50
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 6.0,
|
93 |
+
"grad_norm": 4.320048809051514,
|
94 |
+
"learning_rate": 7e-05,
|
95 |
+
"loss": 0.0206,
|
96 |
+
"step": 60
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 6.0,
|
100 |
+
"eval_loss": 0.0486394502222538,
|
101 |
+
"eval_mse": 0.0486394464969635,
|
102 |
+
"eval_runtime": 0.9146,
|
103 |
+
"eval_samples_per_second": 21.867,
|
104 |
+
"eval_steps_per_second": 3.28,
|
105 |
+
"step": 60
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 7.0,
|
109 |
+
"grad_norm": 4.353482246398926,
|
110 |
+
"learning_rate": 6.500000000000001e-05,
|
111 |
+
"loss": 0.0136,
|
112 |
+
"step": 70
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 7.0,
|
116 |
+
"eval_loss": 0.03369127959012985,
|
117 |
+
"eval_mse": 0.03369127959012985,
|
118 |
+
"eval_runtime": 0.9267,
|
119 |
+
"eval_samples_per_second": 21.582,
|
120 |
+
"eval_steps_per_second": 3.237,
|
121 |
+
"step": 70
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 8.0,
|
125 |
+
"grad_norm": 1.3020066022872925,
|
126 |
+
"learning_rate": 6e-05,
|
127 |
+
"loss": 0.0065,
|
128 |
+
"step": 80
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 8.0,
|
132 |
+
"eval_loss": 0.03295436501502991,
|
133 |
+
"eval_mse": 0.032954368740320206,
|
134 |
+
"eval_runtime": 0.8738,
|
135 |
+
"eval_samples_per_second": 22.889,
|
136 |
+
"eval_steps_per_second": 3.433,
|
137 |
+
"step": 80
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 9.0,
|
141 |
+
"grad_norm": 0.6798593997955322,
|
142 |
+
"learning_rate": 5.500000000000001e-05,
|
143 |
+
"loss": 0.0054,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 9.0,
|
148 |
+
"eval_loss": 0.03235679119825363,
|
149 |
+
"eval_mse": 0.03235679119825363,
|
150 |
+
"eval_runtime": 0.911,
|
151 |
+
"eval_samples_per_second": 21.953,
|
152 |
+
"eval_steps_per_second": 3.293,
|
153 |
+
"step": 90
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 10.0,
|
157 |
+
"grad_norm": 0.5722326040267944,
|
158 |
+
"learning_rate": 5e-05,
|
159 |
+
"loss": 0.0023,
|
160 |
+
"step": 100
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 10.0,
|
164 |
+
"eval_loss": 0.03351482003927231,
|
165 |
+
"eval_mse": 0.03351482003927231,
|
166 |
+
"eval_runtime": 0.9079,
|
167 |
+
"eval_samples_per_second": 22.029,
|
168 |
+
"eval_steps_per_second": 3.304,
|
169 |
+
"step": 100
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 11.0,
|
173 |
+
"grad_norm": 1.5198137760162354,
|
174 |
+
"learning_rate": 4.5e-05,
|
175 |
+
"loss": 0.0035,
|
176 |
+
"step": 110
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 11.0,
|
180 |
+
"eval_loss": 0.03029645048081875,
|
181 |
+
"eval_mse": 0.030296454206109047,
|
182 |
+
"eval_runtime": 0.8889,
|
183 |
+
"eval_samples_per_second": 22.5,
|
184 |
+
"eval_steps_per_second": 3.375,
|
185 |
+
"step": 110
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 12.0,
|
189 |
+
"grad_norm": 2.942338705062866,
|
190 |
+
"learning_rate": 4e-05,
|
191 |
+
"loss": 0.0029,
|
192 |
+
"step": 120
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 12.0,
|
196 |
+
"eval_loss": 0.03209378570318222,
|
197 |
+
"eval_mse": 0.03209378197789192,
|
198 |
+
"eval_runtime": 0.9137,
|
199 |
+
"eval_samples_per_second": 21.889,
|
200 |
+
"eval_steps_per_second": 3.283,
|
201 |
+
"step": 120
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 13.0,
|
205 |
+
"grad_norm": 0.5375175476074219,
|
206 |
+
"learning_rate": 3.5e-05,
|
207 |
+
"loss": 0.0035,
|
208 |
+
"step": 130
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 13.0,
|
212 |
+
"eval_loss": 0.03165650740265846,
|
213 |
+
"eval_mse": 0.03165651112794876,
|
214 |
+
"eval_runtime": 0.9157,
|
215 |
+
"eval_samples_per_second": 21.84,
|
216 |
+
"eval_steps_per_second": 3.276,
|
217 |
+
"step": 130
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 14.0,
|
221 |
+
"grad_norm": 0.43184858560562134,
|
222 |
+
"learning_rate": 3e-05,
|
223 |
+
"loss": 0.0011,
|
224 |
+
"step": 140
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 14.0,
|
228 |
+
"eval_loss": 0.03108842670917511,
|
229 |
+
"eval_mse": 0.03108843043446541,
|
230 |
+
"eval_runtime": 0.889,
|
231 |
+
"eval_samples_per_second": 22.498,
|
232 |
+
"eval_steps_per_second": 3.375,
|
233 |
+
"step": 140
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 15.0,
|
237 |
+
"grad_norm": 0.3797425925731659,
|
238 |
+
"learning_rate": 2.5e-05,
|
239 |
+
"loss": 0.0007,
|
240 |
+
"step": 150
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 15.0,
|
244 |
+
"eval_loss": 0.029892250895500183,
|
245 |
+
"eval_mse": 0.029892250895500183,
|
246 |
+
"eval_runtime": 0.9199,
|
247 |
+
"eval_samples_per_second": 21.742,
|
248 |
+
"eval_steps_per_second": 3.261,
|
249 |
+
"step": 150
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 16.0,
|
253 |
+
"grad_norm": 0.3728632926940918,
|
254 |
+
"learning_rate": 2e-05,
|
255 |
+
"loss": 0.0004,
|
256 |
+
"step": 160
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 16.0,
|
260 |
+
"eval_loss": 0.029963841661810875,
|
261 |
+
"eval_mse": 0.029963845387101173,
|
262 |
+
"eval_runtime": 0.9532,
|
263 |
+
"eval_samples_per_second": 20.981,
|
264 |
+
"eval_steps_per_second": 3.147,
|
265 |
+
"step": 160
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 17.0,
|
269 |
+
"grad_norm": 0.7130188941955566,
|
270 |
+
"learning_rate": 1.5e-05,
|
271 |
+
"loss": 0.0003,
|
272 |
+
"step": 170
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 17.0,
|
276 |
+
"eval_loss": 0.03030126914381981,
|
277 |
+
"eval_mse": 0.03030126728117466,
|
278 |
+
"eval_runtime": 0.8824,
|
279 |
+
"eval_samples_per_second": 22.665,
|
280 |
+
"eval_steps_per_second": 3.4,
|
281 |
+
"step": 170
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 18.0,
|
285 |
+
"grad_norm": 0.05147755146026611,
|
286 |
+
"learning_rate": 1e-05,
|
287 |
+
"loss": 0.0001,
|
288 |
+
"step": 180
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 18.0,
|
292 |
+
"eval_loss": 0.03000779077410698,
|
293 |
+
"eval_mse": 0.03000778891146183,
|
294 |
+
"eval_runtime": 0.9309,
|
295 |
+
"eval_samples_per_second": 21.484,
|
296 |
+
"eval_steps_per_second": 3.223,
|
297 |
+
"step": 180
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 19.0,
|
301 |
+
"grad_norm": 0.17308902740478516,
|
302 |
+
"learning_rate": 5e-06,
|
303 |
+
"loss": 0.0,
|
304 |
+
"step": 190
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 19.0,
|
308 |
+
"eval_loss": 0.030044889077544212,
|
309 |
+
"eval_mse": 0.03004489280283451,
|
310 |
+
"eval_runtime": 0.8961,
|
311 |
+
"eval_samples_per_second": 22.32,
|
312 |
+
"eval_steps_per_second": 3.348,
|
313 |
+
"step": 190
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 20.0,
|
317 |
+
"grad_norm": 0.0706406906247139,
|
318 |
+
"learning_rate": 0.0,
|
319 |
+
"loss": 0.0,
|
320 |
+
"step": 200
|
321 |
+
}
|
322 |
+
],
|
323 |
+
"logging_steps": 10,
|
324 |
+
"max_steps": 200,
|
325 |
+
"num_input_tokens_seen": 0,
|
326 |
+
"num_train_epochs": 20,
|
327 |
+
"save_steps": 10,
|
328 |
+
"stateful_callbacks": {
|
329 |
+
"TrainerControl": {
|
330 |
+
"args": {
|
331 |
+
"should_epoch_stop": false,
|
332 |
+
"should_evaluate": false,
|
333 |
+
"should_log": false,
|
334 |
+
"should_save": true,
|
335 |
+
"should_training_stop": true
|
336 |
+
},
|
337 |
+
"attributes": {}
|
338 |
+
}
|
339 |
+
},
|
340 |
+
"total_flos": 0.0,
|
341 |
+
"train_batch_size": 8,
|
342 |
+
"trial_name": null,
|
343 |
+
"trial_params": null
|
344 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d5c1796317df1902e01cb29a20c763200e732f6482b5e7f7e47862ce3a0b096
|
3 |
+
size 5048
|