torkable commited on
Commit
cc09bc3
1 Parent(s): a5fe2a3

land it better

Browse files
LunarLander-v2-gamme-995.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e5360585538869f375ee379211c882518e9f6f3d06d8943b1a6fe45e858de1c
3
- size 146693
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2892288b1faeab864aa5d1763432eea1003e5aa6fdb6b5f779266ddaa556774c
3
+ size 146628
LunarLander-v2-gamme-995/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac654cb5240>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac654cb52d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac654cb5360>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac654cb53f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7ac654cb5480>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7ac654cb5510>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac654cb55a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac654cb5630>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7ac654cb56c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac654cb5750>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac654cb57e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac654cb5870>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7ac654c63100>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1695073282638867062,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPwzBr90y4A+ZNG6vnuDFr/xcIq8TBGYvQAAAAAAAAAAmhHBux/DszrubeO7K1ISuzDWzDs5oCA9AAAAAAAAAABzN/Q9hXHgOiU+qrz7psM8McEDPGttWToAAAAAAACAP80ofjz2sHa6nK6Su1rw+bbNnXM73NqoOgAAgD8AAIA/mtoyPSniGDurd0w9kMAJPep3qDtFFZQ9AAAAAAAAAAAg6Fo+HhDSPiR1ST71RQa/T9YTPtf9OT0AAAAAAAAAAMVRtL6dOBy9cjBOu7OeITnlgQk+7oflugAAgD8AAIA/miqJPMNRO7rjBUe7gh8MttZcdTjoCGA6AACAPwAAgD+aI0g84Zz8urhgRTzxo7G8MZYYPGJbnD0AAIA/AACAPz18nb5bKs09wkb6vfR4kL5xrKS9rRFcPQAAAAAAAAAARtYrvuJvEz6InNi93UXuviqldb3N6cm9AAAAAAAAAAAqvpS+SqQCvVpVOr1Lu327wD9pPi74PjwAAIA/AACAP0jhs775qO8+mjmgvCoiG7+yzTK+LfvwPQAAAAAAAAAAzS6CvOEOgrr25y87x8fLttZYF7uorUq6AACAPwAAgD9ruaa+1F0UvbMQFDz9Ty498i9SPt4tSj0AAAAAAACAP20cor42nX288imUvF+VwbwRvbo9aq6hPQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVFQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGBjTTvy9VaMAWyUTegDjAF0lEdAlbmBjz7MxHV9lChoBkdANUFRYRujymgHS5ZoCEdAlb6j101ZT3V9lChoBkdAVIpPEbYK6WgHTegDaAhHQJXC+EkB0ZF1fZQoaAZHQFwY9Dx9XtBoB03oA2gIR0CVxfjI7vG7dX2UKGgGR0BfiLilzltCaAdN6ANoCEdAlcwVz2exwHV9lChoBkdAWApGmUGFBmgHTegDaAhHQJXMGIk7fYV1fZQoaAZHQF5uXfIjnmtoB03oA2gIR0CV0aSzgMtsdX2UKGgGR0BVi8pPRAryaAdN6ANoCEdAldeET+NtInV9lChoBkdAWhjodMj/uWgHTegDaAhHQJXX7ujRD1J1fZQoaAZHQFJYh0hePaNoB03oA2gIR0CWCgrrPdEcdX2UKGgGR0BUBDakAPupaAdN6ANoCEdAlg1MR+SbIHV9lChoBkdAYKHLowEhaGgHTegDaAhHQJYSWvNeMQ51fZQoaAZHQDHyquKXOW1oB0t9aAhHQJYWKInBtUJ1fZQoaAZHQGHGpxeb/fhoB03oA2gIR0CWF4KnvUjLdX2UKGgGR0BJSYNy5qdpaAdN6ANoCEdAlhhWTHKfWnV9lChoBkdANYlfReC04WgHS45oCEdAlhtp66asqHV9lChoBkdANdyqU/wAl2gHS21oCEdAlhzER3/xUnV9lChoBkdAK7SN4qwyI2gHS1poCEdAlh2ybDuSfXV9lChoBkdAWBX2ugYgq2gHTegDaAhHQJYjLKEFnqV1fZQoaAZHwAPjsMRYigVoB0tnaAhHQJYke31BdD91fZQoaAZHQFak1wYLsrxoB03oA2gIR0CWKWmTkhicdX2UKGgGR0BEcO9FnZkDaAdN6ANoCEdAlioguAZsK3V9lChoBkdATV4AwPAfuGgHS4VoCEdAli0gTqSowXV9lChoBkdASmxeAuqWC2gHTegDaAhHQJYtZj7Q9id1fZQoaAZHQF0lFAmiQDFoB03oA2gIR0CWMGny/bj+dX2UKGgGR0BBqT41xbSraAdLdmgIR0CWMb6j3225dX2UKGgGR0BWIr48EFGHaAdN6ANoCEdAljM5le4TbnV9lChoBkdAJThYV6/qPmgHS2RoCEdAljWkZR8+inV9lChoBkdAYNIhPj4pMGgHTegDaAhHQJY5Rrcj7hx1fZQoaAZHQF1LJFLFn7JoB03oA2gIR0CWOUzAeq7zdX2UKGgGR8Adrra/RE4OaAdLaGgIR0CWOx8MNMGpdX2UKGgGR0A9MSncclw+aAdLZGgIR0CWPCS+g13udX2UKGgGR0BC4ybpeNT+aAdLiGgIR0CWPM+jua4MdX2UKGgGR0Bf/WEwnH/+aAdN6ANoCEdAlj/XTZxrBXV9lChoBkfAJ0IqTbFju2gHS2JoCEdAlkM90zTF2nV9lChoBkdAWTo7YChexGgHTegDaAhHQJZHHO/tY0V1fZQoaAZHQFstEgW8AaNoB03oA2gIR0CWR3zabnX/dX2UKGgGR0ARfQkX1rZbaAdLhmgIR0CWR66lLvkSdX2UKGgGR0A/c/TLGJemaAdLdmgIR0CWSNaF23a0dX2UKGgGR0BIGDQ7cO9WaAdLYWgIR0CWbmEL6UJOdX2UKGgGR8ApDOcDr7fpaAdLfGgIR0CWbpCMglnidX2UKGgGR8Bc8fLTx5LRaAdLwmgIR0CWcCy4FzMidX2UKGgGR0BXBiiZfD1oaAdN6ANoCEdAlnGkBnzxw3V9lChoBkfAC2Q3gk1MumgHS2xoCEdAlnnwJw84gnV9lChoBkdASnlKIznA7GgHS5JoCEdAlnu8u8K5TnV9lChoBkdAKpzKcNH6M2gHS3poCEdAln1U1AJLNHV9lChoBkdAZYc78Nx2jmgHTegDaAhHQJaEN/hESdx1fZQoaAZHwCMt1wHZ9NNoB0tvaAhHQJaGzp9qk/N1fZQoaAZHQFDLrWAf+0hoB03oA2gIR0CWiY4ZMtbtdX2UKGgGR0BYThYNiH6/aAdN6ANoCEdAloscJD3M6nV9lChoBkfASd84R28qWmgHTUkBaAhHQJaMRSFXaJ11fZQoaAZHQEklfhuO0b9oB0tvaAhHQJaMqOAAhjh1fZQoaAZHQFjLn0kGA09oB03oA2gIR0CWkfvQF9rodX2UKGgGR8AtBtHhCMP0aAdLZmgIR0CWkkBNVR1pdX2UKGgGR0BCWYsd1dPdaAdN6ANoCEdAlpkaxTsIFHV9lChoBkfAJTUUwi7kGWgHS3hoCEdAlpoooNNJv3V9lChoBkdAPNgFcIJJG2gHTegDaAhHQJacrwCr92p1fZQoaAZHQFMTzi0fHPxoB03oA2gIR0CWo1YA80UHdX2UKGgGR0A5S5B1LamGaAdLcWgIR0CWpIVH4GlidX2UKGgGR0BgPlLpRoAXaAdN6ANoCEdAlqYz/lyR0XV9lChoBkdAUpSueSSvDGgHTegDaAhHQJamNn9Nvfl1fZQoaAZHQFOnnCfpUxVoB03oA2gIR0CWqEpSrHU+dX2UKGgGR8A/FgdOqNp/aAdLYWgIR0CWqX3qzJIUdX2UKGgGR0Am3ovi97F9aAdLUmgIR0CWqZlP8AJcdX2UKGgGR0BZBuBlMAWBaAdN6ANoCEdAlrDZ1aGHpXV9lChoBkdANuLn9vS+g2gHS4doCEdAlrEFC5VfeHV9lChoBkdAYASeqaPS2GgHTegDaAhHQJaxmpaRp111fZQoaAZHQDtT238XN1RoB0t4aAhHQJaxspc5bQl1fZQoaAZHQEKuc4HX2/VoB0t9aAhHQJbdlYfW+XZ1fZQoaAZHQDEvJ1aGHpNoB0t0aAhHQJblfUx20Rh1fZQoaAZHQFgV9bHIZIhoB03oA2gIR0CW5fQk5ZKWdX2UKGgGR0BhBalxffGdaAdN6ANoCEdAlugc6mwaBXV9lChoBkdAKHN78ejmCGgHS3FoCEdAlu77n5i3HHV9lChoBkdAJvMPjGT9sWgHS4JoCEdAlvAX6VMVUXV9lChoBkdARKQwIt16mmgHTegDaAhHQJbwejHn2Zl1fZQoaAZHQDgJIjGDL8toB0ttaAhHQJbxk6hg3Lp1fZQoaAZHQFV6+nqFAVxoB03oA2gIR0CW89GQ0XP7dX2UKGgGR0AuywYcebNKaAdN6ANoCEdAlvd3w5NoJ3V9lChoBkdAUEzPZ7HAAWgHTegDaAhHQJb38GX5WR11fZQoaAZHQEbucMEzO5doB0tnaAhHQJb5kbfgrH51fZQoaAZHQEhZb5/LDAJoB0t8aAhHQJb7iogmqo91fZQoaAZHQEdAZwXIlt1oB0teaAhHQJb8BNtZV4p1fZQoaAZHQFEo6o2n889oB03oA2gIR0CW/oCoS+QEdX2UKGgGR0Aunmdy1eByaAdLfGgIR0CXAc0iyIHkdX2UKGgGR0AjW9f1HvtuaAdLb2gIR0CXAh51/2CedX2UKGgGR0ApLT987ZFoaAdLd2gIR0CXA/iqABkqdX2UKGgGR0BVcE9lmOENaAdN6ANoCEdAlwUk/W1+iXV9lChoBkfACoUFB6a9b2gHS3NoCEdAlwYEmdAgPnV9lChoBkdAYHnyBClabGgHTegDaAhHQJcGFKWcBlt1fZQoaAZHQDsy2/i5uqFoB0ucaAhHQJcK9JPIn0F1fZQoaAZHwCh0jiXIEKVoB0toaAhHQJcLQHiWE9N1fZQoaAZHQGJQB3Roh6loB03oA2gIR0CXEQGgi/widX2UKGgGR0BaAtF4LThHaAdN6ANoCEdAlxEF7Y02tXV9lChoBkdANKwYxcmjTWgHS2loCEdAlxH6f4AS4HV9lChoBkdAW50aWHDaXmgHTegDaAhHQJcUlAeJYT11fZQoaAZHQBxaSDAaef9oB0tbaAhHQJcaWWKMvRJ1fZQoaAZHQCUJo/RmbspoB0uNaAhHQJca0kD6nBN1fZQoaAZHQFtWNkOI68xoB03oA2gIR0CXG360IC2ddX2UKGgGR0Bbg81jy4FzaAdN6ANoCEdAlxujo2XLNnV9lChoBkdAXMRNRFZxJmgHTegDaAhHQJccFmwqy4Z1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 496,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -78,9 +78,9 @@
78
  },
79
  "n_envs": 16,
80
  "n_steps": 1024,
81
- "gamma": 0.997,
82
  "gae_lambda": 0.98,
83
- "ent_coef": 0.1,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6f2c54a440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6f2c54a4d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6f2c54a560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6f2c54a5f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e6f2c54a680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e6f2c54a710>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6f2c54a7a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6f2c54a830>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e6f2c54a8c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6f2c54a950>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6f2c54a9e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6f2c54aa70>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e6f2c4dfd80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 3014656,
25
+ "_total_timesteps": 3000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1695079327493424466,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYHQL47Xpk+4CLmPh34zr7clie9ikaYPgAAAAAAAAAAWmRCPtxvET5z1P2+G5mcvhCbTr0asv69AAAAAAAAAABmdkG8h/y5Pzp/ZL5DSqQ+ZemOuynPh70AAAAAAAAAAAAvPz3UVkc+0YYYvWxMwr4Q/ug8fQTDvAAAAAAAAAAAeieFPiKUKj8lIyU+cRo3v+/qAD9SX/i8AAAAAAAAAACzv589l98/P7uE2jyLGDO/z8TMPd4VzrwAAAAAAAAAAGb+pTu4Y7Y/POUuPudlOT7nTr27Bb0cvQAAAAAAAAAA5mEkPcPpLbqhQEI1MvOEMOIAirrDIE+0AACAPwAAgD+AIA09dMW1PhtR7L1Ftb2+3+7uO4R3lr0AAAAAAAAAAM3tZz00PLs9YwmhvidppL63Sy++eKKhvQAAAAAAAAAAs0vOPUHdsT3l72u+UiS8vrQ8z734XXC8AAAAAAAAAACaOfs8aDe/P2j+zD1aoy6+GhCGvca4Sz0AAAAAAAAAAGYEKLwM0KE/0tqvvSzqOb9ehTO9QvK9vQAAAAAAAAAApqOXPVx7cT1FhjC+VMpIvrIBkr0Akla9AAAAAAAAAACabU09Cnspu9kmvbxGPog8agqGPFZwa70AAIA/AACAPzOFHbxB2au8HKckvu00cj3gnwe78eGrPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOpQ6hg3LqMAWyUS7eMAXSUR0Cwjl9joZAIdX2UKGgGR0Bz9JY7q6e5aAdL4WgIR0CwjmHVsk6cdX2UKGgGR0BxKlZxJd0JaAdL3GgIR0CwjpFwgkkbdX2UKGgGR0ByzqBoVVPvaAdNxgFoCEdAsI6hpcophHV9lChoBkdAcUYY1YQrc2gHS8doCEdAsI68//vOQnV9lChoBkdAcIBFlTWGy2gHS79oCEdAsI7V2zOX3XV9lChoBkdAcV/E1EVnEmgHS6FoCEdAsI7idz4k/3V9lChoBkdAcbZvxYq5LGgHS8xoCEdAsI8Pzd1uBXV9lChoBkdAcynWk8A7xWgHS9hoCEdAsI80M5OrQ3V9lChoBkdAcP80o0ALiWgHS8VoCEdAsI9cVKwpv3V9lChoBkdAcl1EW69TP2gHS6RoCEdAsI9n6j323HV9lChoBkdAcosdk8Rtg2gHS9BoCEdAsI9+x0MgEHV9lChoBkdAcihUuctoSWgHS61oCEdAsI+F/MGHHnV9lChoBkdAcwHzkZJkG2gHS8ZoCEdAsJk5W4mTknV9lChoBkdAcrnA31jAi2gHS7VoCEdAsJk5Iy0rsnV9lChoBkdAcbNmCAc1fmgHS8VoCEdAsJlP/zasZHV9lChoBkdAcb81UEPlMmgHS9poCEdAsJl1DZ13dXV9lChoBkdAcUpAsCkoF2gHS7doCEdAsJl9edCmdnV9lChoBkdAcfdAaNuLrGgHS8xoCEdAsJmBH09QoHV9lChoBkdAcuAbjtG/e2gHS8ZoCEdAsJmDGuLaVXV9lChoBkdAcMKNKh+OO2gHS7FoCEdAsJmHCTEBKnV9lChoBkdAccWZaV2RrGgHS7loCEdAsJm26Ae7tnV9lChoBkdAcdWUtI0652gHS9xoCEdAsJnMq0+kg3V9lChoBkdAcI8ZwGW2PWgHS9poCEdAsJoC/ATIvXV9lChoBkdAcpq+w1R+B2gHS8FoCEdAsJoAdBBzFXV9lChoBkdAc86HCXQdCGgHS7xoCEdAsJoOQA+6iHV9lChoBkdAczNY8dPtUmgHS9loCEdAsJoedYnv2HV9lChoBkdAcgEKTB68hGgHS89oCEdAsJonY02tMnV9lChoBkdAcjTAbQ1JlWgHS6hoCEdAsJo8uJ1q33V9lChoBkdAcEM3KSxJNGgHS8BoCEdAsJpdbC79RHV9lChoBkdASC16w+t8u2gHS35oCEdAsJp4K1G9YnV9lChoBkdAcxwJBPbfxmgHS69oCEdAsJqIyJsO5XV9lChoBkdAcUI1lXiiqWgHS8RoCEdAsJqlLPD503V9lChoBkdAdAL7qptJnWgHS+RoCEdAsJqtY+0PYnV9lChoBkdAciaJBw++umgHS89oCEdAsJquV1Oj7HV9lChoBkdAc/baVUuL8GgHS8toCEdAsJq6B/Zuh3V9lChoBkdAcvIVt4zJp2gHS9doCEdAsJrIk8ifQXV9lChoBkdAb0ylchTwUmgHS7poCEdAsJrpW8yvcXV9lChoBkdAcLBr5IpYtGgHS7FoCEdAsJsRdC3PRnV9lChoBkdAcAHUT+NtImgHS7RoCEdAsJsTZUT+N3V9lChoBkdAcwZyBClabGgHS81oCEdAsJtH2/SH/XV9lChoBkdAczaOjZcs2GgHS8toCEdAsJtVeUpuuXV9lChoBkdAcTuVh1DBuWgHS8toCEdAsJtfTG5tnHV9lChoBkdAcgztL+PzWmgHS8ZoCEdAsJtvc2zfJnV9lChoBkdAcFlNwBHTZ2gHS7doCEdAsJt9vIfbK3V9lChoBkdAcGR7TUiIL2gHS7hoCEdAsJursqril3V9lChoBkdAcLjolUp/gGgHS6VoCEdAsJu1DneSCHV9lChoBkdAcpanpjc2zmgHS6xoCEdAsJvMUVSGanV9lChoBkdAc8EdJJ5E+mgHS9xoCEdAsJvU40dilXV9lChoBkdAcyuTzND+i2gHS7toCEdAsJvYVGkN4XV9lChoBkdAcsygXMyJsWgHS9VoCEdAsJv3hLoOhHV9lChoBkdAbyYSxqwhXGgHS7hoCEdAsJwPPcBU73V9lChoBkdAbzclAu7HyWgHS89oCEdAsJwQpDu0C3V9lChoBkdAaA4W/rSmZWgHTegDaAhHQLCcJjABT4t1fZQoaAZHQHDQvG2kSEloB0u8aAhHQLCcOTpgTh51fZQoaAZHQHJApHiFTNtoB0u8aAhHQLCcOkNWluZ1fZQoaAZHQHLrvLDAJsxoB0utaAhHQLCcWsEJSix1fZQoaAZHQG7kvtD2JzloB0u4aAhHQLCcXs3hn8N1fZQoaAZHQHI4lRpDeCVoB0upaAhHQLCca3pfQa91fZQoaAZHQHDt7w4KhL5oB0u5aAhHQLCccse4kNZ1fZQoaAZHQHFjOM6zVtpoB0u1aAhHQLCchZ7Xxvx1fZQoaAZHQHALJ9E1EVpoB0utaAhHQLCcnz9jwx51fZQoaAZHQHQbObRWtEJoB0u1aAhHQLCcsXXRPXV1fZQoaAZHQHGa6JMxoIxoB0uuaAhHQLCcu0hNdqt1fZQoaAZHQHALmS+xnnNoB0u8aAhHQLCc16mO2iN1fZQoaAZHQHBriprDZUVoB0vAaAhHQLCc4O7QLNR1fZQoaAZHQHDzuymhufpoB0upaAhHQLCc8ziS7oV1fZQoaAZHQHGdCWzF+/hoB0vGaAhHQLCdBahHskZ1fZQoaAZHQHNc3QQcxTNoB0vMaAhHQLCdJmYSg5B1fZQoaAZHQESQ7NjbzshoB0tiaAhHQLCdLFJg9eR1fZQoaAZHQHHffMKTjedoB0vHaAhHQLCdNZdv8651fZQoaAZHQHJSauKXOW1oB0ujaAhHQLCdQJ9y9251fZQoaAZHQHHwJ7sv7FdoB0vOaAhHQLCdVdYGMXJ1fZQoaAZHQHIHBi5NGmVoB0vSaAhHQLCdYg6ltTF1fZQoaAZHQHKdQV9F4LVoB0u/aAhHQLCdcMtK7I11fZQoaAZHQHHXbofSx7loB0uxaAhHQLCdd1eSjg11fZQoaAZHQHOIVSsKb8ZoB0vLaAhHQLCdnIn0Cih1fZQoaAZHQHBoWR3eN1hoB0vBaAhHQLCdrumrKeV1fZQoaAZHQHAILdN34bloB0u5aAhHQLCd34rSVnp1fZQoaAZHQHKAU5EMLF5oB0u+aAhHQLCd9avzOHF1fZQoaAZHQHF/xkRSP2hoB0u0aAhHQLCeLeiSJTF1fZQoaAZHQHFnluJk5IZoB0vIaAhHQLCeOpIczZZ1fZQoaAZHQHJq0G7jDKpoB0vRaAhHQLCeQKqXF991fZQoaAZHQHEXTk2gnMNoB0u0aAhHQLCeSCBwuNB1fZQoaAZHQHNDJY5ksjFoB0vJaAhHQLCenAnUlRh1fZQoaAZHQHBxmicoYvZoB0vFaAhHQLCep8Tzund1fZQoaAZHQHIeIldC3PRoB0vQaAhHQLCesKCg9Nh1fZQoaAZHQHELDGo73f1oB0uyaAhHQLCetwVTJhh1fZQoaAZHQHERX/T9bX9oB0uqaAhHQLCetvZAY511fZQoaAZHQHOjOObRWtFoB0vJaAhHQLCewfhuO0d1fZQoaAZHQHEUOI2wV0toB0vOaAhHQLCe3v2Xb/R1fZQoaAZHQHKeV7D2rXFoB0vJaAhHQLCe98Lront1fZQoaAZHQG6/HBtUGV1oB0u9aAhHQLCfBiNKh+R1fZQoaAZHQHCgO9i+cpdoB0u6aAhHQLCfFjRD1Gt1fZQoaAZHQHCBT7EYO2BoB0vCaAhHQLCfVxEfDDV1fZQoaAZHQHIB0cfeUINoB0u4aAhHQLCfW5eZ5Rl1fZQoaAZHQHEtW74BV+9oB0usaAhHQLCfmjQAuI11fZQoaAZHQHFvhiG34KxoB0u2aAhHQLCfvuejEeh1fZQoaAZHQHJrU3Kji4toB0vEaAhHQLCfz/gzguR1fZQoaAZHQHFlT3Zf2K5oB0vMaAhHQLCf070nPVx1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 1472,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
78
  },
79
  "n_envs": 16,
80
  "n_steps": 1024,
81
+ "gamma": 0.995,
82
  "gae_lambda": 0.98,
83
+ "ent_coef": 0.022,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
LunarLander-v2-gamme-995/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c0f5fc1bfcb012207ca6951b47a96e5282fe50cb215eed6ab0d57bb8cf283882
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:952166ecdf0cf1c0818122e1acec0ce5421b2f9d653518b8e888efa9506e5c73
3
  size 87929
LunarLander-v2-gamme-995/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2f88c8259da571fc9e0a013d48bea1d282d02a47047a3ed2acdfdee13b42382b
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bd6e5a6c3e66ab1a32f3261b3e63fbd62a8be5680de5c6b610eac9b8f225872
3
  size 43329
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 196.89 +/- 78.23
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 288.09 +/- 18.83
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac654cb5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac654cb52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac654cb5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac654cb53f0>", "_build": "<function ActorCriticPolicy._build at 0x7ac654cb5480>", "forward": "<function ActorCriticPolicy.forward at 0x7ac654cb5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac654cb55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac654cb5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7ac654cb56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac654cb5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac654cb57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac654cb5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac654c63100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695073282638867062, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPwzBr90y4A+ZNG6vnuDFr/xcIq8TBGYvQAAAAAAAAAAmhHBux/DszrubeO7K1ISuzDWzDs5oCA9AAAAAAAAAABzN/Q9hXHgOiU+qrz7psM8McEDPGttWToAAAAAAACAP80ofjz2sHa6nK6Su1rw+bbNnXM73NqoOgAAgD8AAIA/mtoyPSniGDurd0w9kMAJPep3qDtFFZQ9AAAAAAAAAAAg6Fo+HhDSPiR1ST71RQa/T9YTPtf9OT0AAAAAAAAAAMVRtL6dOBy9cjBOu7OeITnlgQk+7oflugAAgD8AAIA/miqJPMNRO7rjBUe7gh8MttZcdTjoCGA6AACAPwAAgD+aI0g84Zz8urhgRTzxo7G8MZYYPGJbnD0AAIA/AACAPz18nb5bKs09wkb6vfR4kL5xrKS9rRFcPQAAAAAAAAAARtYrvuJvEz6InNi93UXuviqldb3N6cm9AAAAAAAAAAAqvpS+SqQCvVpVOr1Lu327wD9pPi74PjwAAIA/AACAP0jhs775qO8+mjmgvCoiG7+yzTK+LfvwPQAAAAAAAAAAzS6CvOEOgrr25y87x8fLttZYF7uorUq6AACAPwAAgD9ruaa+1F0UvbMQFDz9Ty498i9SPt4tSj0AAAAAAACAP20cor42nX288imUvF+VwbwRvbo9aq6hPQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGBjTTvy9VaMAWyUTegDjAF0lEdAlbmBjz7MxHV9lChoBkdANUFRYRujymgHS5ZoCEdAlb6j101ZT3V9lChoBkdAVIpPEbYK6WgHTegDaAhHQJXC+EkB0ZF1fZQoaAZHQFwY9Dx9XtBoB03oA2gIR0CVxfjI7vG7dX2UKGgGR0BfiLilzltCaAdN6ANoCEdAlcwVz2exwHV9lChoBkdAWApGmUGFBmgHTegDaAhHQJXMGIk7fYV1fZQoaAZHQF5uXfIjnmtoB03oA2gIR0CV0aSzgMtsdX2UKGgGR0BVi8pPRAryaAdN6ANoCEdAldeET+NtInV9lChoBkdAWhjodMj/uWgHTegDaAhHQJXX7ujRD1J1fZQoaAZHQFJYh0hePaNoB03oA2gIR0CWCgrrPdEcdX2UKGgGR0BUBDakAPupaAdN6ANoCEdAlg1MR+SbIHV9lChoBkdAYKHLowEhaGgHTegDaAhHQJYSWvNeMQ51fZQoaAZHQDHyquKXOW1oB0t9aAhHQJYWKInBtUJ1fZQoaAZHQGHGpxeb/fhoB03oA2gIR0CWF4KnvUjLdX2UKGgGR0BJSYNy5qdpaAdN6ANoCEdAlhhWTHKfWnV9lChoBkdANYlfReC04WgHS45oCEdAlhtp66asqHV9lChoBkdANdyqU/wAl2gHS21oCEdAlhzER3/xUnV9lChoBkdAK7SN4qwyI2gHS1poCEdAlh2ybDuSfXV9lChoBkdAWBX2ugYgq2gHTegDaAhHQJYjLKEFnqV1fZQoaAZHwAPjsMRYigVoB0tnaAhHQJYke31BdD91fZQoaAZHQFak1wYLsrxoB03oA2gIR0CWKWmTkhicdX2UKGgGR0BEcO9FnZkDaAdN6ANoCEdAlioguAZsK3V9lChoBkdATV4AwPAfuGgHS4VoCEdAli0gTqSowXV9lChoBkdASmxeAuqWC2gHTegDaAhHQJYtZj7Q9id1fZQoaAZHQF0lFAmiQDFoB03oA2gIR0CWMGny/bj+dX2UKGgGR0BBqT41xbSraAdLdmgIR0CWMb6j3225dX2UKGgGR0BWIr48EFGHaAdN6ANoCEdAljM5le4TbnV9lChoBkdAJThYV6/qPmgHS2RoCEdAljWkZR8+inV9lChoBkdAYNIhPj4pMGgHTegDaAhHQJY5Rrcj7hx1fZQoaAZHQF1LJFLFn7JoB03oA2gIR0CWOUzAeq7zdX2UKGgGR8Adrra/RE4OaAdLaGgIR0CWOx8MNMGpdX2UKGgGR0A9MSncclw+aAdLZGgIR0CWPCS+g13udX2UKGgGR0BC4ybpeNT+aAdLiGgIR0CWPM+jua4MdX2UKGgGR0Bf/WEwnH/+aAdN6ANoCEdAlj/XTZxrBXV9lChoBkfAJ0IqTbFju2gHS2JoCEdAlkM90zTF2nV9lChoBkdAWTo7YChexGgHTegDaAhHQJZHHO/tY0V1fZQoaAZHQFstEgW8AaNoB03oA2gIR0CWR3zabnX/dX2UKGgGR0ARfQkX1rZbaAdLhmgIR0CWR66lLvkSdX2UKGgGR0A/c/TLGJemaAdLdmgIR0CWSNaF23a0dX2UKGgGR0BIGDQ7cO9WaAdLYWgIR0CWbmEL6UJOdX2UKGgGR8ApDOcDr7fpaAdLfGgIR0CWbpCMglnidX2UKGgGR8Bc8fLTx5LRaAdLwmgIR0CWcCy4FzMidX2UKGgGR0BXBiiZfD1oaAdN6ANoCEdAlnGkBnzxw3V9lChoBkfAC2Q3gk1MumgHS2xoCEdAlnnwJw84gnV9lChoBkdASnlKIznA7GgHS5JoCEdAlnu8u8K5TnV9lChoBkdAKpzKcNH6M2gHS3poCEdAln1U1AJLNHV9lChoBkdAZYc78Nx2jmgHTegDaAhHQJaEN/hESdx1fZQoaAZHwCMt1wHZ9NNoB0tvaAhHQJaGzp9qk/N1fZQoaAZHQFDLrWAf+0hoB03oA2gIR0CWiY4ZMtbtdX2UKGgGR0BYThYNiH6/aAdN6ANoCEdAloscJD3M6nV9lChoBkfASd84R28qWmgHTUkBaAhHQJaMRSFXaJ11fZQoaAZHQEklfhuO0b9oB0tvaAhHQJaMqOAAhjh1fZQoaAZHQFjLn0kGA09oB03oA2gIR0CWkfvQF9rodX2UKGgGR8AtBtHhCMP0aAdLZmgIR0CWkkBNVR1pdX2UKGgGR0BCWYsd1dPdaAdN6ANoCEdAlpkaxTsIFHV9lChoBkfAJTUUwi7kGWgHS3hoCEdAlpoooNNJv3V9lChoBkdAPNgFcIJJG2gHTegDaAhHQJacrwCr92p1fZQoaAZHQFMTzi0fHPxoB03oA2gIR0CWo1YA80UHdX2UKGgGR0A5S5B1LamGaAdLcWgIR0CWpIVH4GlidX2UKGgGR0BgPlLpRoAXaAdN6ANoCEdAlqYz/lyR0XV9lChoBkdAUpSueSSvDGgHTegDaAhHQJamNn9Nvfl1fZQoaAZHQFOnnCfpUxVoB03oA2gIR0CWqEpSrHU+dX2UKGgGR8A/FgdOqNp/aAdLYWgIR0CWqX3qzJIUdX2UKGgGR0Am3ovi97F9aAdLUmgIR0CWqZlP8AJcdX2UKGgGR0BZBuBlMAWBaAdN6ANoCEdAlrDZ1aGHpXV9lChoBkdANuLn9vS+g2gHS4doCEdAlrEFC5VfeHV9lChoBkdAYASeqaPS2GgHTegDaAhHQJaxmpaRp111fZQoaAZHQDtT238XN1RoB0t4aAhHQJaxspc5bQl1fZQoaAZHQEKuc4HX2/VoB0t9aAhHQJbdlYfW+XZ1fZQoaAZHQDEvJ1aGHpNoB0t0aAhHQJblfUx20Rh1fZQoaAZHQFgV9bHIZIhoB03oA2gIR0CW5fQk5ZKWdX2UKGgGR0BhBalxffGdaAdN6ANoCEdAlugc6mwaBXV9lChoBkdAKHN78ejmCGgHS3FoCEdAlu77n5i3HHV9lChoBkdAJvMPjGT9sWgHS4JoCEdAlvAX6VMVUXV9lChoBkdARKQwIt16mmgHTegDaAhHQJbwejHn2Zl1fZQoaAZHQDgJIjGDL8toB0ttaAhHQJbxk6hg3Lp1fZQoaAZHQFV6+nqFAVxoB03oA2gIR0CW89GQ0XP7dX2UKGgGR0AuywYcebNKaAdN6ANoCEdAlvd3w5NoJ3V9lChoBkdAUEzPZ7HAAWgHTegDaAhHQJb38GX5WR11fZQoaAZHQEbucMEzO5doB0tnaAhHQJb5kbfgrH51fZQoaAZHQEhZb5/LDAJoB0t8aAhHQJb7iogmqo91fZQoaAZHQEdAZwXIlt1oB0teaAhHQJb8BNtZV4p1fZQoaAZHQFEo6o2n889oB03oA2gIR0CW/oCoS+QEdX2UKGgGR0Aunmdy1eByaAdLfGgIR0CXAc0iyIHkdX2UKGgGR0AjW9f1HvtuaAdLb2gIR0CXAh51/2CedX2UKGgGR0ApLT987ZFoaAdLd2gIR0CXA/iqABkqdX2UKGgGR0BVcE9lmOENaAdN6ANoCEdAlwUk/W1+iXV9lChoBkfACoUFB6a9b2gHS3NoCEdAlwYEmdAgPnV9lChoBkdAYHnyBClabGgHTegDaAhHQJcGFKWcBlt1fZQoaAZHQDsy2/i5uqFoB0ucaAhHQJcK9JPIn0F1fZQoaAZHwCh0jiXIEKVoB0toaAhHQJcLQHiWE9N1fZQoaAZHQGJQB3Roh6loB03oA2gIR0CXEQGgi/widX2UKGgGR0BaAtF4LThHaAdN6ANoCEdAlxEF7Y02tXV9lChoBkdANKwYxcmjTWgHS2loCEdAlxH6f4AS4HV9lChoBkdAW50aWHDaXmgHTegDaAhHQJcUlAeJYT11fZQoaAZHQBxaSDAaef9oB0tbaAhHQJcaWWKMvRJ1fZQoaAZHQCUJo/RmbspoB0uNaAhHQJca0kD6nBN1fZQoaAZHQFtWNkOI68xoB03oA2gIR0CXG360IC2ddX2UKGgGR0Bbg81jy4FzaAdN6ANoCEdAlxujo2XLNnV9lChoBkdAXMRNRFZxJmgHTegDaAhHQJccFmwqy4Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.997, "gae_lambda": 0.98, "ent_coef": 0.1, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6f2c54a440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6f2c54a4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6f2c54a560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6f2c54a5f0>", "_build": "<function ActorCriticPolicy._build at 0x7e6f2c54a680>", "forward": "<function ActorCriticPolicy.forward at 0x7e6f2c54a710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6f2c54a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6f2c54a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7e6f2c54a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6f2c54a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6f2c54a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6f2c54aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6f2c4dfd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695079327493424466, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYHQL47Xpk+4CLmPh34zr7clie9ikaYPgAAAAAAAAAAWmRCPtxvET5z1P2+G5mcvhCbTr0asv69AAAAAAAAAABmdkG8h/y5Pzp/ZL5DSqQ+ZemOuynPh70AAAAAAAAAAAAvPz3UVkc+0YYYvWxMwr4Q/ug8fQTDvAAAAAAAAAAAeieFPiKUKj8lIyU+cRo3v+/qAD9SX/i8AAAAAAAAAACzv589l98/P7uE2jyLGDO/z8TMPd4VzrwAAAAAAAAAAGb+pTu4Y7Y/POUuPudlOT7nTr27Bb0cvQAAAAAAAAAA5mEkPcPpLbqhQEI1MvOEMOIAirrDIE+0AACAPwAAgD+AIA09dMW1PhtR7L1Ftb2+3+7uO4R3lr0AAAAAAAAAAM3tZz00PLs9YwmhvidppL63Sy++eKKhvQAAAAAAAAAAs0vOPUHdsT3l72u+UiS8vrQ8z734XXC8AAAAAAAAAACaOfs8aDe/P2j+zD1aoy6+GhCGvca4Sz0AAAAAAAAAAGYEKLwM0KE/0tqvvSzqOb9ehTO9QvK9vQAAAAAAAAAApqOXPVx7cT1FhjC+VMpIvrIBkr0Akla9AAAAAAAAAACabU09Cnspu9kmvbxGPog8agqGPFZwa70AAIA/AACAPzOFHbxB2au8HKckvu00cj3gnwe78eGrPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOpQ6hg3LqMAWyUS7eMAXSUR0Cwjl9joZAIdX2UKGgGR0Bz9JY7q6e5aAdL4WgIR0CwjmHVsk6cdX2UKGgGR0BxKlZxJd0JaAdL3GgIR0CwjpFwgkkbdX2UKGgGR0ByzqBoVVPvaAdNxgFoCEdAsI6hpcophHV9lChoBkdAcUYY1YQrc2gHS8doCEdAsI68//vOQnV9lChoBkdAcIBFlTWGy2gHS79oCEdAsI7V2zOX3XV9lChoBkdAcV/E1EVnEmgHS6FoCEdAsI7idz4k/3V9lChoBkdAcbZvxYq5LGgHS8xoCEdAsI8Pzd1uBXV9lChoBkdAcynWk8A7xWgHS9hoCEdAsI80M5OrQ3V9lChoBkdAcP80o0ALiWgHS8VoCEdAsI9cVKwpv3V9lChoBkdAcl1EW69TP2gHS6RoCEdAsI9n6j323HV9lChoBkdAcosdk8Rtg2gHS9BoCEdAsI9+x0MgEHV9lChoBkdAcihUuctoSWgHS61oCEdAsI+F/MGHHnV9lChoBkdAcwHzkZJkG2gHS8ZoCEdAsJk5W4mTknV9lChoBkdAcrnA31jAi2gHS7VoCEdAsJk5Iy0rsnV9lChoBkdAcbNmCAc1fmgHS8VoCEdAsJlP/zasZHV9lChoBkdAcb81UEPlMmgHS9poCEdAsJl1DZ13dXV9lChoBkdAcUpAsCkoF2gHS7doCEdAsJl9edCmdnV9lChoBkdAcfdAaNuLrGgHS8xoCEdAsJmBH09QoHV9lChoBkdAcuAbjtG/e2gHS8ZoCEdAsJmDGuLaVXV9lChoBkdAcMKNKh+OO2gHS7FoCEdAsJmHCTEBKnV9lChoBkdAccWZaV2RrGgHS7loCEdAsJm26Ae7tnV9lChoBkdAcdWUtI0652gHS9xoCEdAsJnMq0+kg3V9lChoBkdAcI8ZwGW2PWgHS9poCEdAsJoC/ATIvXV9lChoBkdAcpq+w1R+B2gHS8FoCEdAsJoAdBBzFXV9lChoBkdAc86HCXQdCGgHS7xoCEdAsJoOQA+6iHV9lChoBkdAczNY8dPtUmgHS9loCEdAsJoedYnv2HV9lChoBkdAcgEKTB68hGgHS89oCEdAsJonY02tMnV9lChoBkdAcjTAbQ1JlWgHS6hoCEdAsJo8uJ1q33V9lChoBkdAcEM3KSxJNGgHS8BoCEdAsJpdbC79RHV9lChoBkdASC16w+t8u2gHS35oCEdAsJp4K1G9YnV9lChoBkdAcxwJBPbfxmgHS69oCEdAsJqIyJsO5XV9lChoBkdAcUI1lXiiqWgHS8RoCEdAsJqlLPD503V9lChoBkdAdAL7qptJnWgHS+RoCEdAsJqtY+0PYnV9lChoBkdAciaJBw++umgHS89oCEdAsJquV1Oj7HV9lChoBkdAc/baVUuL8GgHS8toCEdAsJq6B/Zuh3V9lChoBkdAcvIVt4zJp2gHS9doCEdAsJrIk8ifQXV9lChoBkdAb0ylchTwUmgHS7poCEdAsJrpW8yvcXV9lChoBkdAcLBr5IpYtGgHS7FoCEdAsJsRdC3PRnV9lChoBkdAcAHUT+NtImgHS7RoCEdAsJsTZUT+N3V9lChoBkdAcwZyBClabGgHS81oCEdAsJtH2/SH/XV9lChoBkdAczaOjZcs2GgHS8toCEdAsJtVeUpuuXV9lChoBkdAcTuVh1DBuWgHS8toCEdAsJtfTG5tnHV9lChoBkdAcgztL+PzWmgHS8ZoCEdAsJtvc2zfJnV9lChoBkdAcFlNwBHTZ2gHS7doCEdAsJt9vIfbK3V9lChoBkdAcGR7TUiIL2gHS7hoCEdAsJursqril3V9lChoBkdAcLjolUp/gGgHS6VoCEdAsJu1DneSCHV9lChoBkdAcpanpjc2zmgHS6xoCEdAsJvMUVSGanV9lChoBkdAc8EdJJ5E+mgHS9xoCEdAsJvU40dilXV9lChoBkdAcyuTzND+i2gHS7toCEdAsJvYVGkN4XV9lChoBkdAcsygXMyJsWgHS9VoCEdAsJv3hLoOhHV9lChoBkdAbyYSxqwhXGgHS7hoCEdAsJwPPcBU73V9lChoBkdAbzclAu7HyWgHS89oCEdAsJwQpDu0C3V9lChoBkdAaA4W/rSmZWgHTegDaAhHQLCcJjABT4t1fZQoaAZHQHDQvG2kSEloB0u8aAhHQLCcOTpgTh51fZQoaAZHQHJApHiFTNtoB0u8aAhHQLCcOkNWluZ1fZQoaAZHQHLrvLDAJsxoB0utaAhHQLCcWsEJSix1fZQoaAZHQG7kvtD2JzloB0u4aAhHQLCcXs3hn8N1fZQoaAZHQHI4lRpDeCVoB0upaAhHQLCca3pfQa91fZQoaAZHQHDt7w4KhL5oB0u5aAhHQLCccse4kNZ1fZQoaAZHQHFjOM6zVtpoB0u1aAhHQLCchZ7Xxvx1fZQoaAZHQHALJ9E1EVpoB0utaAhHQLCcnz9jwx51fZQoaAZHQHQbObRWtEJoB0u1aAhHQLCcsXXRPXV1fZQoaAZHQHGa6JMxoIxoB0uuaAhHQLCcu0hNdqt1fZQoaAZHQHALmS+xnnNoB0u8aAhHQLCc16mO2iN1fZQoaAZHQHBriprDZUVoB0vAaAhHQLCc4O7QLNR1fZQoaAZHQHDzuymhufpoB0upaAhHQLCc8ziS7oV1fZQoaAZHQHGdCWzF+/hoB0vGaAhHQLCdBahHskZ1fZQoaAZHQHNc3QQcxTNoB0vMaAhHQLCdJmYSg5B1fZQoaAZHQESQ7NjbzshoB0tiaAhHQLCdLFJg9eR1fZQoaAZHQHHffMKTjedoB0vHaAhHQLCdNZdv8651fZQoaAZHQHJSauKXOW1oB0ujaAhHQLCdQJ9y9251fZQoaAZHQHHwJ7sv7FdoB0vOaAhHQLCdVdYGMXJ1fZQoaAZHQHIHBi5NGmVoB0vSaAhHQLCdYg6ltTF1fZQoaAZHQHKdQV9F4LVoB0u/aAhHQLCdcMtK7I11fZQoaAZHQHHXbofSx7loB0uxaAhHQLCdd1eSjg11fZQoaAZHQHOIVSsKb8ZoB0vLaAhHQLCdnIn0Cih1fZQoaAZHQHBoWR3eN1hoB0vBaAhHQLCdrumrKeV1fZQoaAZHQHAILdN34bloB0u5aAhHQLCd34rSVnp1fZQoaAZHQHKAU5EMLF5oB0u+aAhHQLCd9avzOHF1fZQoaAZHQHF/xkRSP2hoB0u0aAhHQLCeLeiSJTF1fZQoaAZHQHFnluJk5IZoB0vIaAhHQLCeOpIczZZ1fZQoaAZHQHJq0G7jDKpoB0vRaAhHQLCeQKqXF991fZQoaAZHQHEXTk2gnMNoB0u0aAhHQLCeSCBwuNB1fZQoaAZHQHNDJY5ksjFoB0vJaAhHQLCenAnUlRh1fZQoaAZHQHBxmicoYvZoB0vFaAhHQLCep8Tzund1fZQoaAZHQHIeIldC3PRoB0vQaAhHQLCesKCg9Nh1fZQoaAZHQHELDGo73f1oB0uyaAhHQLCetwVTJhh1fZQoaAZHQHERX/T9bX9oB0uqaAhHQLCetvZAY511fZQoaAZHQHOjOObRWtFoB0vJaAhHQLCewfhuO0d1fZQoaAZHQHEUOI2wV0toB0vOaAhHQLCe3v2Xb/R1fZQoaAZHQHKeV7D2rXFoB0vJaAhHQLCe98Lront1fZQoaAZHQG6/HBtUGV1oB0u9aAhHQLCfBiNKh+R1fZQoaAZHQHCgO9i+cpdoB0u6aAhHQLCfFjRD1Gt1fZQoaAZHQHCBT7EYO2BoB0vCaAhHQLCfVxEfDDV1fZQoaAZHQHIB0cfeUINoB0u4aAhHQLCfW5eZ5Rl1fZQoaAZHQHEtW74BV+9oB0usaAhHQLCfmjQAuI11fZQoaAZHQHFvhiG34KxoB0u2aAhHQLCfvuejEeh1fZQoaAZHQHJrU3Kji4toB0vEaAhHQLCfz/gzguR1fZQoaAZHQHFlT3Zf2K5oB0vMaAhHQLCf070nPVx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.022, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 196.89298250000002, "std_reward": 78.23333247537163, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T22:06:29.778520"}
 
1
+ {"mean_reward": 288.0865659, "std_reward": 18.830947571865682, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T00:33:26.816667"}