torkable commited on
Commit
d847c5c
1 Parent(s): 5935fed

land that shit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.87 +/- 14.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b928a8c6050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b928a8c60e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b928a8c6170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b928a8c6200>", "_build": "<function ActorCriticPolicy._build at 0x7b928a8c6290>", "forward": "<function ActorCriticPolicy.forward at 0x7b928a8c6320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b928a8c63b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b928a8c6440>", "_predict": "<function ActorCriticPolicy._predict at 0x7b928a8c64d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b928a8c6560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b928a8c65f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b928a8c6680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b92a88967c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694902789307873981, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFDJkz4nkF+9+thUOqIyUblZfsC+/bGVuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJbQlWwNb2MAWyUTXYBjAF0lEdAnJ4j2vjfenV9lChoBkdAMSC2UjcEeWgHS/9oCEdAnKCbXpW3jXV9lChoBkdAcT/AEt/WlWgHS/xoCEdAnKIGSpzcRHV9lChoBkdAP9oq9XcQAmgHTQMBaAhHQJyjZQuVX3h1fZQoaAZHQHF4Jpi7TUloB00nAWgIR0CcpPTEit7sdX2UKGgGR0BGoh8IAwPAaAdL9WgIR0Ccp1lZowmFdX2UKGgGR0BvLx9Aood/aAdNRQFoCEdAnKkUEgW8AnV9lChoBkdAb5JGMGX5WWgHTS8BaAhHQJyqvQMQVbl1fZQoaAZHQHArwtrbg0loB01PAWgIR0CcrZguAZsLdX2UKGgGR0BrPFUyYXwcaAdNOAFoCEdAnK9i13MY/HV9lChoBkdAcOUD+irT6WgHTXIBaAhHQJyxZPrOZ9d1fZQoaAZHQHBorLhaTwFoB01MAWgIR0CctEQ4S6DodX2UKGgGR0BG1a3RXwLFaAdL3mgIR0CctXljmSyMdX2UKGgGR0Bux7g/C66KaAdNPgFoCEdAnLc2J3xFzHV9lChoBkdAbv/CzkZJkGgHTTUBaAhHQJy5c/keZG91fZQoaAZHQHGDt8qnWJ9oB00mAWgIR0CcvP+so2GZdX2UKGgGR0BvcqCJ40MxaAdNKQFoCEdAnL8l2FFlTXV9lChoBkdAcb+fNA1NxmgHTRgBaAhHQJzBYWRA8jl1fZQoaAZHQHBEUWykbgloB00jAWgIR0CcxVpgCwKTdX2UKGgGR0AnqUeuFHrhaAdL82gIR0Ccx5B+nZTRdX2UKGgGR0BxbG9alk6LaAdNGgFoCEdAnMn2zByjpXV9lChoBkdAcvfDqW1MNGgHTRABaAhHQJzMLk92X9l1fZQoaAZHQHBl1c2R7qpoB00nAWgIR0CczvA0Kqn4dX2UKGgGR0BwOzmLcbiqaAdNGwFoCEdAnNBvl6qsEXV9lChoBkdAcZL44Ia99WgHTTUBaAhHQJzSHiWE9Md1fZQoaAZHQHDJV+y7f51oB00VAWgIR0Cc06SLqD9PdX2UKGgGR0Bu9tiF0xM4aAdNSwFoCEdAnNaOCf6Gg3V9lChoBkdAbrqlqJuVHGgHTS0BaAhHQJzYL7m+0w91fZQoaAZHQHG8bAxi5NJoB00VAWgIR0Cc2bFFDv3KdX2UKGgGR0BD9DGtITXbaAdL/mgIR0Cc3CdSEUTMdX2UKGgGR0Bu/ZV81Gb1aAdNNAFoCEdAnN3c7ZFoc3V9lChoBkdAbz68vEjxC2gHTTABaAhHQJzfgbNr0rd1fZQoaAZHQHA0uZ5Rjz9oB00yAWgIR0Cc4Syq+8GtdX2UKGgGR0Bxi2hqTKT0aAdNMQFoCEdAnOPwFPi1iXV9lChoBkdAcaBBfa6BiGgHTbIBaAhHQJzmTztkWh11fZQoaAZHQHGpyCvovBdoB01jAWgIR0Cc6VYAbQ1KdX2UKGgGR0BxPZpN9H+ZaAdNFAFoCEdAnOrRwEQoTnV9lChoBkdAO9eYplSS/2gHTegDaAhHQJzxb1TR6Wx1fZQoaAZHQHBpYhpxm05oB00vAWgIR0Cc8wFBIFvAdX2UKGgGR0BxruaPS2H+aAdNJwFoCEdAnPShg3Lmp3V9lChoBkdAbli+L3sXzmgHTU8BaAhHQJz4iy7f51x1fZQoaAZHQG4jCoS+QEJoB00cAWgIR0Cc+pVv/BFedX2UKGgGR0BxGzqPfbblaAdNMgFoCEdAnPzPn4fwJHV9lChoBkdAbHFnIQvpQmgHTRcBaAhHQJ0AtQyhzvJ1fZQoaAZHQHD5OF+NLlFoB001AWgIR0CdAzlQMx46dX2UKGgGR0BxNOwUxmCiaAdNOQFoCEdAnQW6fWcz7HV9lChoBkdAcjM3BHkLhWgHTVABaAhHQJ0JsA+6iCd1fZQoaAZHQGxUQLeANG5oB00tAWgIR0CdC1ECNjsldX2UKGgGR0BwP1MSK3uvaAdNkgFoCEdAnQ19Pk7wKHV9lChoBkdAbdBFEy+HrWgHTTkBaAhHQJ0QMwWWQfZ1fZQoaAZHQHEPHUc4o7VoB01bAWgIR0CdEhhje9BbdX2UKGgGR0BtB5x1gYxdaAdNKgFoCEdAnROrrC3w1HV9lChoBkdAcGJXS0BwM2gHTSIBaAhHQJ0VuKKpDNR1fZQoaAZHQHFdCTyJ9ApoB03iAWgIR0CdGWWo3rD7dX2UKGgGR0BuyhOWSlnAaAdN5QFoCEdAnRvxMN+b3HV9lChoBkdAcX2M8YAKfGgHTUoBaAhHQJ0ezjp9qlB1fZQoaAZHQG9vmWUr08NoB01uAWgIR0CdIMz2vjffdX2UKGgGR0BsBrtPYWcjaAdNgQJoCEdAnSVTu4PPLXV9lChoBkdAcLyEw35vcmgHTYoBaAhHQJ0ndLkCFK11fZQoaAZHQG7OLIgeRxNoB01EAWgIR0CdKT6ZYxL1dX2UKGgGR0BwdyyTpxFRaAdNMAFoCEdAnSv+3x4IKXV9lChoBkdAb66mPYFqz2gHTTgBaAhHQJ0ttIWgvlF1fZQoaAZHQGPDWsA/9pBoB03oA2gIR0CdNVR1HOKPdX2UKGgGR0BRnGUbDMvAaAdL7WgIR0CdNvLnLaEjdX2UKGgGR0BjowI6bONYaAdN6ANoCEdAnUCdEgGKRHV9lChoBkdAcC7xAB1cMWgHTaACaAhHQJ1G5K02LpB1fZQoaAZHQG0KAaNuLrJoB03SAmgIR0CdS9+QU5+6dX2UKGgGR0ByN09ECvHMaAdN0AFoCEdAnU5qWLP2PHV9lChoBkdAb8uOjIq9XmgHTUUCaAhHQJ1SolVtGd91fZQoaAZHQHBJN4iX6ZZoB00yAWgIR0CdVETOgQHzdX2UKGgGR0BtpBk/bCaaaAdNMwNoCEdAnVnS0rsjV3V9lChoBkdAcMrMBZIQOGgHTTMBaAhHQJ1beBz3h4t1fZQoaAZHQHALYXTEzftoB03cAWgIR0CdXgwZOzppdX2UKGgGR0BrJRkAggX/aAdNogNoCEdAnWQ8hC+lCXV9lChoBkdAcMsCMglniGgHTRMBaAhHQJ1nGFoL5RF1fZQoaAZHQHBz4yCWeH1oB02VAWgIR0CdaU50bLlndX2UKGgGR0Bv/6rNnoPkaAdNGgFoCEdAnWrSP+4smXV9lChoBkdAbT/ck+otMGgHTWwBaAhHQJ1uF1W8yvd1fZQoaAZHQCfiynk1dgRoB0vtaAhHQJ1vzaPCEYh1fZQoaAZHQHBFtdiUgSxoB00QAWgIR0CdcdUc4o7WdX2UKGgGR0BwyarCFbmmaAdNTAFoCEdAnXQz3yqdYnV9lChoBkdAbbvyksSTQmgHTTcBaAhHQJ14T7EYO2B1fZQoaAZHQHC5pmEoOQRoB01kAWgIR0CdezP420iRdX2UKGgGR0BxW6a/h2nsaAdNngFoCEdAnX6GKVII4XV9lChoBkdAcSx+kgwGnmgHTQkBaAhHQJ2CI+lj3Eh1fZQoaAZHQHBo47aIvaloB00sAWgIR0Cdg8BvaURndX2UKGgGR0BvvHA2ycCpaAdNRAFoCEdAnYWFiay8jHV9lChoBkdARi/aYeDFqGgHS9FoCEdAnYfBnvlU63V9lChoBkdAbreqVhTfi2gHTTMBaAhHQJ2Jaj+Jgst1fZQoaAZHQHMIwcT8HfNoB009AWgIR0Cdix1uR9w4dX2UKGgGR0BxgclWwNb1aAdNLgFoCEdAnYzKP0Zm7XV9lChoBkdAcpV7jkuHvmgHTSIBaAhHQJ2PiJKraM91fZQoaAZHQG9gU2LpA2RoB00wAWgIR0CdkTKPXCj2dX2UKGgGR0BtcJFocrAhaAdNJgFoCEdAnZLFS0jTrnV9lChoBkdAbU6xiXpnpWgHS/9oCEdAnZU9pyp71XV9lChoBkdAUVVeBxxT9GgHS8poCEdAnZZWTkhib3V9lChoBkdAcoBNR3u/lGgHTTIBaAhHQJ2X/Ue+23N1fZQoaAZHQGuxQL3K0UpoB00gAWgIR0CdmY6lLvkSdX2UKGgGR0BwreDEm6XjaAdNKQFoCEdAnZxDGLk0anV9lChoBkdAb4PBdD6WPmgHTRsBaAhHQJ2dzCBPKuB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRTDu3UlMe+XPiaVG6dymz0gCMA2luY5SKES3HW5R7Tg9o4ppS6uJhWb0AdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWOTnKjAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:155a993b3180a7edae4da61948a89f3e88d354c68c2239d10ca1deb33d11a39d
3
+ size 146330
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b928a8c6050>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b928a8c60e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b928a8c6170>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b928a8c6200>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b928a8c6290>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b928a8c6320>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b928a8c63b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b928a8c6440>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b928a8c64d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b928a8c6560>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b928a8c65f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b928a8c6680>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b92a88967c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694902789307873981,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFDJkz4nkF+9+thUOqIyUblZfsC+/bGVuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJbQlWwNb2MAWyUTXYBjAF0lEdAnJ4j2vjfenV9lChoBkdAMSC2UjcEeWgHS/9oCEdAnKCbXpW3jXV9lChoBkdAcT/AEt/WlWgHS/xoCEdAnKIGSpzcRHV9lChoBkdAP9oq9XcQAmgHTQMBaAhHQJyjZQuVX3h1fZQoaAZHQHF4Jpi7TUloB00nAWgIR0CcpPTEit7sdX2UKGgGR0BGoh8IAwPAaAdL9WgIR0Ccp1lZowmFdX2UKGgGR0BvLx9Aood/aAdNRQFoCEdAnKkUEgW8AnV9lChoBkdAb5JGMGX5WWgHTS8BaAhHQJyqvQMQVbl1fZQoaAZHQHArwtrbg0loB01PAWgIR0CcrZguAZsLdX2UKGgGR0BrPFUyYXwcaAdNOAFoCEdAnK9i13MY/HV9lChoBkdAcOUD+irT6WgHTXIBaAhHQJyxZPrOZ9d1fZQoaAZHQHBorLhaTwFoB01MAWgIR0CctEQ4S6DodX2UKGgGR0BG1a3RXwLFaAdL3mgIR0CctXljmSyMdX2UKGgGR0Bux7g/C66KaAdNPgFoCEdAnLc2J3xFzHV9lChoBkdAbv/CzkZJkGgHTTUBaAhHQJy5c/keZG91fZQoaAZHQHGDt8qnWJ9oB00mAWgIR0CcvP+so2GZdX2UKGgGR0BvcqCJ40MxaAdNKQFoCEdAnL8l2FFlTXV9lChoBkdAcb+fNA1NxmgHTRgBaAhHQJzBYWRA8jl1fZQoaAZHQHBEUWykbgloB00jAWgIR0CcxVpgCwKTdX2UKGgGR0AnqUeuFHrhaAdL82gIR0Ccx5B+nZTRdX2UKGgGR0BxbG9alk6LaAdNGgFoCEdAnMn2zByjpXV9lChoBkdAcvfDqW1MNGgHTRABaAhHQJzMLk92X9l1fZQoaAZHQHBl1c2R7qpoB00nAWgIR0CczvA0Kqn4dX2UKGgGR0BwOzmLcbiqaAdNGwFoCEdAnNBvl6qsEXV9lChoBkdAcZL44Ia99WgHTTUBaAhHQJzSHiWE9Md1fZQoaAZHQHDJV+y7f51oB00VAWgIR0Cc06SLqD9PdX2UKGgGR0Bu9tiF0xM4aAdNSwFoCEdAnNaOCf6Gg3V9lChoBkdAbrqlqJuVHGgHTS0BaAhHQJzYL7m+0w91fZQoaAZHQHG8bAxi5NJoB00VAWgIR0Cc2bFFDv3KdX2UKGgGR0BD9DGtITXbaAdL/mgIR0Cc3CdSEUTMdX2UKGgGR0Bu/ZV81Gb1aAdNNAFoCEdAnN3c7ZFoc3V9lChoBkdAbz68vEjxC2gHTTABaAhHQJzfgbNr0rd1fZQoaAZHQHA0uZ5Rjz9oB00yAWgIR0Cc4Syq+8GtdX2UKGgGR0Bxi2hqTKT0aAdNMQFoCEdAnOPwFPi1iXV9lChoBkdAcaBBfa6BiGgHTbIBaAhHQJzmTztkWh11fZQoaAZHQHGpyCvovBdoB01jAWgIR0Cc6VYAbQ1KdX2UKGgGR0BxPZpN9H+ZaAdNFAFoCEdAnOrRwEQoTnV9lChoBkdAO9eYplSS/2gHTegDaAhHQJzxb1TR6Wx1fZQoaAZHQHBpYhpxm05oB00vAWgIR0Cc8wFBIFvAdX2UKGgGR0BxruaPS2H+aAdNJwFoCEdAnPShg3Lmp3V9lChoBkdAbli+L3sXzmgHTU8BaAhHQJz4iy7f51x1fZQoaAZHQG4jCoS+QEJoB00cAWgIR0Cc+pVv/BFedX2UKGgGR0BxGzqPfbblaAdNMgFoCEdAnPzPn4fwJHV9lChoBkdAbHFnIQvpQmgHTRcBaAhHQJ0AtQyhzvJ1fZQoaAZHQHD5OF+NLlFoB001AWgIR0CdAzlQMx46dX2UKGgGR0BxNOwUxmCiaAdNOQFoCEdAnQW6fWcz7HV9lChoBkdAcjM3BHkLhWgHTVABaAhHQJ0JsA+6iCd1fZQoaAZHQGxUQLeANG5oB00tAWgIR0CdC1ECNjsldX2UKGgGR0BwP1MSK3uvaAdNkgFoCEdAnQ19Pk7wKHV9lChoBkdAbdBFEy+HrWgHTTkBaAhHQJ0QMwWWQfZ1fZQoaAZHQHEPHUc4o7VoB01bAWgIR0CdEhhje9BbdX2UKGgGR0BtB5x1gYxdaAdNKgFoCEdAnROrrC3w1HV9lChoBkdAcGJXS0BwM2gHTSIBaAhHQJ0VuKKpDNR1fZQoaAZHQHFdCTyJ9ApoB03iAWgIR0CdGWWo3rD7dX2UKGgGR0BuyhOWSlnAaAdN5QFoCEdAnRvxMN+b3HV9lChoBkdAcX2M8YAKfGgHTUoBaAhHQJ0ezjp9qlB1fZQoaAZHQG9vmWUr08NoB01uAWgIR0CdIMz2vjffdX2UKGgGR0BsBrtPYWcjaAdNgQJoCEdAnSVTu4PPLXV9lChoBkdAcLyEw35vcmgHTYoBaAhHQJ0ndLkCFK11fZQoaAZHQG7OLIgeRxNoB01EAWgIR0CdKT6ZYxL1dX2UKGgGR0BwdyyTpxFRaAdNMAFoCEdAnSv+3x4IKXV9lChoBkdAb66mPYFqz2gHTTgBaAhHQJ0ttIWgvlF1fZQoaAZHQGPDWsA/9pBoB03oA2gIR0CdNVR1HOKPdX2UKGgGR0BRnGUbDMvAaAdL7WgIR0CdNvLnLaEjdX2UKGgGR0BjowI6bONYaAdN6ANoCEdAnUCdEgGKRHV9lChoBkdAcC7xAB1cMWgHTaACaAhHQJ1G5K02LpB1fZQoaAZHQG0KAaNuLrJoB03SAmgIR0CdS9+QU5+6dX2UKGgGR0ByN09ECvHMaAdN0AFoCEdAnU5qWLP2PHV9lChoBkdAb8uOjIq9XmgHTUUCaAhHQJ1SolVtGd91fZQoaAZHQHBJN4iX6ZZoB00yAWgIR0CdVETOgQHzdX2UKGgGR0BtpBk/bCaaaAdNMwNoCEdAnVnS0rsjV3V9lChoBkdAcMrMBZIQOGgHTTMBaAhHQJ1beBz3h4t1fZQoaAZHQHALYXTEzftoB03cAWgIR0CdXgwZOzppdX2UKGgGR0BrJRkAggX/aAdNogNoCEdAnWQ8hC+lCXV9lChoBkdAcMsCMglniGgHTRMBaAhHQJ1nGFoL5RF1fZQoaAZHQHBz4yCWeH1oB02VAWgIR0CdaU50bLlndX2UKGgGR0Bv/6rNnoPkaAdNGgFoCEdAnWrSP+4smXV9lChoBkdAbT/ck+otMGgHTWwBaAhHQJ1uF1W8yvd1fZQoaAZHQCfiynk1dgRoB0vtaAhHQJ1vzaPCEYh1fZQoaAZHQHBFtdiUgSxoB00QAWgIR0CdcdUc4o7WdX2UKGgGR0BwyarCFbmmaAdNTAFoCEdAnXQz3yqdYnV9lChoBkdAbbvyksSTQmgHTTcBaAhHQJ14T7EYO2B1fZQoaAZHQHC5pmEoOQRoB01kAWgIR0CdezP420iRdX2UKGgGR0BxW6a/h2nsaAdNngFoCEdAnX6GKVII4XV9lChoBkdAcSx+kgwGnmgHTQkBaAhHQJ2CI+lj3Eh1fZQoaAZHQHBo47aIvaloB00sAWgIR0Cdg8BvaURndX2UKGgGR0BvvHA2ycCpaAdNRAFoCEdAnYWFiay8jHV9lChoBkdARi/aYeDFqGgHS9FoCEdAnYfBnvlU63V9lChoBkdAbreqVhTfi2gHTTMBaAhHQJ2Jaj+Jgst1fZQoaAZHQHMIwcT8HfNoB009AWgIR0Cdix1uR9w4dX2UKGgGR0BxgclWwNb1aAdNLgFoCEdAnYzKP0Zm7XV9lChoBkdAcpV7jkuHvmgHTSIBaAhHQJ2PiJKraM91fZQoaAZHQG9gU2LpA2RoB00wAWgIR0CdkTKPXCj2dX2UKGgGR0BtcJFocrAhaAdNJgFoCEdAnZLFS0jTrnV9lChoBkdAbU6xiXpnpWgHS/9oCEdAnZU9pyp71XV9lChoBkdAUVVeBxxT9GgHS8poCEdAnZZWTkhib3V9lChoBkdAcoBNR3u/lGgHTTIBaAhHQJ2X/Ue+23N1fZQoaAZHQGuxQL3K0UpoB00gAWgIR0CdmY6lLvkSdX2UKGgGR0BwreDEm6XjaAdNKQFoCEdAnZxDGLk0anV9lChoBkdAb4PBdD6WPmgHTRsBaAhHQJ2dzCBPKuB1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRTDu3UlMe+XPiaVG6dymz0gCMA2luY5SKES3HW5R7Tg9o4ppS6uJhWb0AdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWOTnKjAHVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd6c020bb08a690f9c0ff549df9ac503f499bb1aeb106aad3d743fc003e682cf
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3848e1b7d79f91021ea40de3bd0b5e7c6caa9ff2f701203414c04a823531ebd
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.8729343, "std_reward": 14.604774406523056, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-16T22:59:38.253177"}