devin-ai-integration[bot]
commited on
Commit
·
2fbf6b1
1
Parent(s):
a4bfcad
Add TotalSegmentator models
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/.DS_Store +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/._.DS_Store +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset.json +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset_fingerprint.json +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._plans.json +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +40 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/.DS_Store +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._.DS_Store +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._debug.json +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._training_log_2023_5_13_11_18_49.txt +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
- Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/.DS_Store +0 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/._.DS_Store +0 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store +0 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store +0 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +42 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
- Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
- Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +34 -0
- Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
- Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
- Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
- Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
- Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
- Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +39 -0
- Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
- Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
- Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
- Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
- Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
- Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +42 -0
- Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
- Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
- Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
- Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
- Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
- __MACOSX/._Dataset291_TotalSegmentator_part1_organs_1559subj +0 -0
- __MACOSX/._Dataset292_TotalSegmentator_part2_vertebrae_1532subj +0 -0
- __MACOSX/._Dataset293_TotalSegmentator_part3_cardiac_1559subj +0 -0
- __MACOSX/._Dataset294_TotalSegmentator_part4_muscles_1559subj +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.hdf5 filter=lfs diff=lfs merge=lfs -text
|
Dataset291_TotalSegmentator_part1_organs_1559subj/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/._.DS_Store
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset.json
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset_fingerprint.json
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._plans.json
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Segmentation of X",
|
3 |
+
"description": "Segmentation",
|
4 |
+
"reference": "Jakob",
|
5 |
+
"licence": "-",
|
6 |
+
"release": "0.0",
|
7 |
+
"labels": {
|
8 |
+
"background": 0,
|
9 |
+
"spleen": 1,
|
10 |
+
"kidney_right": 2,
|
11 |
+
"kidney_left": 3,
|
12 |
+
"gallbladder": 4,
|
13 |
+
"liver": 5,
|
14 |
+
"stomach": 6,
|
15 |
+
"pancreas": 7,
|
16 |
+
"adrenal_gland_right": 8,
|
17 |
+
"adrenal_gland_left": 9,
|
18 |
+
"lung_upper_lobe_left": 10,
|
19 |
+
"lung_lower_lobe_left": 11,
|
20 |
+
"lung_upper_lobe_right": 12,
|
21 |
+
"lung_middle_lobe_right": 13,
|
22 |
+
"lung_lower_lobe_right": 14,
|
23 |
+
"esophagus": 15,
|
24 |
+
"trachea": 16,
|
25 |
+
"thyroid_gland": 17,
|
26 |
+
"small_bowel": 18,
|
27 |
+
"duodenum": 19,
|
28 |
+
"colon": 20,
|
29 |
+
"urinary_bladder": 21,
|
30 |
+
"prostate": 22,
|
31 |
+
"kidney_cyst_left": 23,
|
32 |
+
"kidney_cyst_right": 24
|
33 |
+
},
|
34 |
+
"numTraining": 1559,
|
35 |
+
"channel_names": {
|
36 |
+
"0": "CT"
|
37 |
+
},
|
38 |
+
"file_ending": ".nii.gz",
|
39 |
+
"overwrite_image_reader_writer": "NibabelIOWithReorient"
|
40 |
+
}
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._.DS_Store
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._debug.json
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._training_log_2023_5_13_11_18_49.txt
ADDED
Binary file (4.1 kB). View file
|
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98c429f89fd9b3b08890fbb2b4c08c365ad4655fdcadb45efaa29380129fd890
|
3 |
+
size 251697787
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8700,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd24452c340>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd24452c1c0>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd24452ce50>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd24452ce20>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'spleen': 1, 'kidney_right': 2, 'kidney_left': 3, 'gallbladder': 4, 'liver': 5, 'stomach': 6, 'pancreas': 7, 'adrenal_gland_right': 8, 'adrenal_gland_left': 9, 'lung_upper_lobe_left': 10, 'lung_lower_lobe_left': 11, 'lung_upper_lobe_right': 12, 'lung_middle_lobe_right': 13, 'lung_lower_lobe_right': 14, 'esophagus': 15, 'trachea': 16, 'thyroid_gland': 17, 'small_bowel': 18, 'duodenum': 19, 'colon': 20, 'urinary_bladder': 21, 'prostate': 22, 'kidney_cyst_left': 23, 'kidney_cyst_right': 24}, 'numTraining': 1559, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fd255327e20>",
|
23 |
+
"hostname": "rndapollolp01.uhbs.ch",
|
24 |
+
"inference_allowed_mirroring_axes": "None",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fd255327ee0>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/mnt/nor/nnunet/results_v2/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_5_13_11_18_49.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fd255327d90>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fd341069310>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset291_TotalSegmentator_part1_organs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3606.0, 'mean': -370.00039267657144, 'median': -249.0, 'min': -3139.0, 'percentile_00_5': -1024.0, 'percentile_99_5': 276.0, 'std': 436.5998675471528}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'spleen': 1, 'kidney_right': 2, 'kidney_left': 3, 'gallbladder': 4, 'liver': 5, 'stomach': 6, 'pancreas': 7, 'adrenal_gland_right': 8, 'adrenal_gland_left': 9, 'lung_upper_lobe_left': 10, 'lung_lower_lobe_left': 11, 'lung_upper_lobe_right': 12, 'lung_middle_lobe_right': 13, 'lung_lower_lobe_right': 14, 'esophagus': 15, 'trachea': 16, 'thyroid_gland': 17, 'small_bowel': 18, 'duodenum': 19, 'colon': 20, 'urinary_bladder': 21, 'prostate': 22, 'kidney_cyst_left': 23, 'kidney_cyst_right': 24}, 'numTraining': 1559, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/mnt/nor/nnunet/results_v2/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
|
42 |
+
"output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset291_TotalSegmentator_part1_organs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3606.0, 'mean': -370.00039267657144, 'median': -249.0, 'min': -3139.0, 'percentile_00_5': -1024.0, 'percentile_99_5': 276.0, 'std': 436.5998675471528}}}",
|
45 |
+
"preprocessed_dataset_folder": "/dojo/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/dojo/Dataset291_TotalSegmentator_part1_organs_1559subj",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.0",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset291_TotalSegmentator_part1_organs_1559subj",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.5,
|
6 |
+
1.5,
|
7 |
+
1.5
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
227,
|
11 |
+
227,
|
12 |
+
240
|
13 |
+
],
|
14 |
+
"image_reader_writer": "NibabelIOWithReorient",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 46,
|
30 |
+
"patch_size": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
227.0,
|
36 |
+
239.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.5,
|
40 |
+
1.5
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"CTNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2,
|
57 |
+
2
|
58 |
+
],
|
59 |
+
"n_conv_per_stage_decoder": [
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"num_pool_per_axis": [
|
68 |
+
6,
|
69 |
+
6
|
70 |
+
],
|
71 |
+
"pool_op_kernel_sizes": [
|
72 |
+
[
|
73 |
+
1,
|
74 |
+
1
|
75 |
+
],
|
76 |
+
[
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
[
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
[
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
[
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
[
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
2
|
99 |
+
]
|
100 |
+
],
|
101 |
+
"conv_kernel_sizes": [
|
102 |
+
[
|
103 |
+
3,
|
104 |
+
3
|
105 |
+
],
|
106 |
+
[
|
107 |
+
3,
|
108 |
+
3
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3,
|
112 |
+
3
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3,
|
116 |
+
3
|
117 |
+
],
|
118 |
+
[
|
119 |
+
3,
|
120 |
+
3
|
121 |
+
],
|
122 |
+
[
|
123 |
+
3,
|
124 |
+
3
|
125 |
+
],
|
126 |
+
[
|
127 |
+
3,
|
128 |
+
3
|
129 |
+
]
|
130 |
+
],
|
131 |
+
"unet_max_num_features": 512,
|
132 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
133 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
134 |
+
"resampling_fn_data_kwargs": {
|
135 |
+
"is_seg": false,
|
136 |
+
"order": 3,
|
137 |
+
"order_z": 0,
|
138 |
+
"force_separate_z": null
|
139 |
+
},
|
140 |
+
"resampling_fn_seg_kwargs": {
|
141 |
+
"is_seg": true,
|
142 |
+
"order": 1,
|
143 |
+
"order_z": 0,
|
144 |
+
"force_separate_z": null
|
145 |
+
},
|
146 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
147 |
+
"resampling_fn_probabilities_kwargs": {
|
148 |
+
"is_seg": false,
|
149 |
+
"order": 1,
|
150 |
+
"order_z": 0,
|
151 |
+
"force_separate_z": null
|
152 |
+
},
|
153 |
+
"batch_dice": true
|
154 |
+
},
|
155 |
+
"3d_lowres": {
|
156 |
+
"data_identifier": "nnUNetPlans_3d_lowres",
|
157 |
+
"preprocessor_name": "DefaultPreprocessor",
|
158 |
+
"batch_size": 2,
|
159 |
+
"patch_size": [
|
160 |
+
128,
|
161 |
+
128,
|
162 |
+
128
|
163 |
+
],
|
164 |
+
"median_image_size_in_voxels": [
|
165 |
+
196,
|
166 |
+
196,
|
167 |
+
206
|
168 |
+
],
|
169 |
+
"spacing": [
|
170 |
+
1.7389111114500002,
|
171 |
+
1.7389111114500002,
|
172 |
+
1.7389111114500002
|
173 |
+
],
|
174 |
+
"normalization_schemes": [
|
175 |
+
"CTNormalization"
|
176 |
+
],
|
177 |
+
"use_mask_for_norm": [
|
178 |
+
false
|
179 |
+
],
|
180 |
+
"UNet_class_name": "PlainConvUNet",
|
181 |
+
"UNet_base_num_features": 32,
|
182 |
+
"n_conv_per_stage_encoder": [
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2,
|
186 |
+
2,
|
187 |
+
2,
|
188 |
+
2
|
189 |
+
],
|
190 |
+
"n_conv_per_stage_decoder": [
|
191 |
+
2,
|
192 |
+
2,
|
193 |
+
2,
|
194 |
+
2,
|
195 |
+
2
|
196 |
+
],
|
197 |
+
"num_pool_per_axis": [
|
198 |
+
5,
|
199 |
+
5,
|
200 |
+
5
|
201 |
+
],
|
202 |
+
"pool_op_kernel_sizes": [
|
203 |
+
[
|
204 |
+
1,
|
205 |
+
1,
|
206 |
+
1
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
],
|
223 |
+
[
|
224 |
+
2,
|
225 |
+
2,
|
226 |
+
2
|
227 |
+
],
|
228 |
+
[
|
229 |
+
2,
|
230 |
+
2,
|
231 |
+
2
|
232 |
+
]
|
233 |
+
],
|
234 |
+
"conv_kernel_sizes": [
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
],
|
255 |
+
[
|
256 |
+
3,
|
257 |
+
3,
|
258 |
+
3
|
259 |
+
],
|
260 |
+
[
|
261 |
+
3,
|
262 |
+
3,
|
263 |
+
3
|
264 |
+
]
|
265 |
+
],
|
266 |
+
"unet_max_num_features": 320,
|
267 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
268 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
269 |
+
"resampling_fn_data_kwargs": {
|
270 |
+
"is_seg": false,
|
271 |
+
"order": 3,
|
272 |
+
"order_z": 0,
|
273 |
+
"force_separate_z": null
|
274 |
+
},
|
275 |
+
"resampling_fn_seg_kwargs": {
|
276 |
+
"is_seg": true,
|
277 |
+
"order": 1,
|
278 |
+
"order_z": 0,
|
279 |
+
"force_separate_z": null
|
280 |
+
},
|
281 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
282 |
+
"resampling_fn_probabilities_kwargs": {
|
283 |
+
"is_seg": false,
|
284 |
+
"order": 1,
|
285 |
+
"order_z": 0,
|
286 |
+
"force_separate_z": null
|
287 |
+
},
|
288 |
+
"batch_dice": false,
|
289 |
+
"next_stage": "3d_cascade_fullres"
|
290 |
+
},
|
291 |
+
"3d_fullres": {
|
292 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
293 |
+
"preprocessor_name": "DefaultPreprocessor",
|
294 |
+
"batch_size": 2,
|
295 |
+
"patch_size": [
|
296 |
+
128,
|
297 |
+
128,
|
298 |
+
128
|
299 |
+
],
|
300 |
+
"median_image_size_in_voxels": [
|
301 |
+
227.0,
|
302 |
+
227.0,
|
303 |
+
239.0
|
304 |
+
],
|
305 |
+
"spacing": [
|
306 |
+
1.5,
|
307 |
+
1.5,
|
308 |
+
1.5
|
309 |
+
],
|
310 |
+
"normalization_schemes": [
|
311 |
+
"CTNormalization"
|
312 |
+
],
|
313 |
+
"use_mask_for_norm": [
|
314 |
+
false
|
315 |
+
],
|
316 |
+
"UNet_class_name": "PlainConvUNet",
|
317 |
+
"UNet_base_num_features": 32,
|
318 |
+
"n_conv_per_stage_encoder": [
|
319 |
+
2,
|
320 |
+
2,
|
321 |
+
2,
|
322 |
+
2,
|
323 |
+
2,
|
324 |
+
2
|
325 |
+
],
|
326 |
+
"n_conv_per_stage_decoder": [
|
327 |
+
2,
|
328 |
+
2,
|
329 |
+
2,
|
330 |
+
2,
|
331 |
+
2
|
332 |
+
],
|
333 |
+
"num_pool_per_axis": [
|
334 |
+
5,
|
335 |
+
5,
|
336 |
+
5
|
337 |
+
],
|
338 |
+
"pool_op_kernel_sizes": [
|
339 |
+
[
|
340 |
+
1,
|
341 |
+
1,
|
342 |
+
1
|
343 |
+
],
|
344 |
+
[
|
345 |
+
2,
|
346 |
+
2,
|
347 |
+
2
|
348 |
+
],
|
349 |
+
[
|
350 |
+
2,
|
351 |
+
2,
|
352 |
+
2
|
353 |
+
],
|
354 |
+
[
|
355 |
+
2,
|
356 |
+
2,
|
357 |
+
2
|
358 |
+
],
|
359 |
+
[
|
360 |
+
2,
|
361 |
+
2,
|
362 |
+
2
|
363 |
+
],
|
364 |
+
[
|
365 |
+
2,
|
366 |
+
2,
|
367 |
+
2
|
368 |
+
]
|
369 |
+
],
|
370 |
+
"conv_kernel_sizes": [
|
371 |
+
[
|
372 |
+
3,
|
373 |
+
3,
|
374 |
+
3
|
375 |
+
],
|
376 |
+
[
|
377 |
+
3,
|
378 |
+
3,
|
379 |
+
3
|
380 |
+
],
|
381 |
+
[
|
382 |
+
3,
|
383 |
+
3,
|
384 |
+
3
|
385 |
+
],
|
386 |
+
[
|
387 |
+
3,
|
388 |
+
3,
|
389 |
+
3
|
390 |
+
],
|
391 |
+
[
|
392 |
+
3,
|
393 |
+
3,
|
394 |
+
3
|
395 |
+
],
|
396 |
+
[
|
397 |
+
3,
|
398 |
+
3,
|
399 |
+
3
|
400 |
+
]
|
401 |
+
],
|
402 |
+
"unet_max_num_features": 320,
|
403 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
404 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
405 |
+
"resampling_fn_data_kwargs": {
|
406 |
+
"is_seg": false,
|
407 |
+
"order": 3,
|
408 |
+
"order_z": 0,
|
409 |
+
"force_separate_z": null
|
410 |
+
},
|
411 |
+
"resampling_fn_seg_kwargs": {
|
412 |
+
"is_seg": true,
|
413 |
+
"order": 1,
|
414 |
+
"order_z": 0,
|
415 |
+
"force_separate_z": null
|
416 |
+
},
|
417 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
418 |
+
"resampling_fn_probabilities_kwargs": {
|
419 |
+
"is_seg": false,
|
420 |
+
"order": 1,
|
421 |
+
"order_z": 0,
|
422 |
+
"force_separate_z": null
|
423 |
+
},
|
424 |
+
"batch_dice": true
|
425 |
+
},
|
426 |
+
"3d_cascade_fullres": {
|
427 |
+
"inherits_from": "3d_fullres",
|
428 |
+
"previous_stage": "3d_lowres"
|
429 |
+
}
|
430 |
+
},
|
431 |
+
"experiment_planner_used": "ExperimentPlanner",
|
432 |
+
"label_manager": "LabelManager",
|
433 |
+
"foreground_intensity_properties_per_channel": {
|
434 |
+
"0": {
|
435 |
+
"max": 3606.0,
|
436 |
+
"mean": -370.00039267657144,
|
437 |
+
"median": -249.0,
|
438 |
+
"min": -3139.0,
|
439 |
+
"percentile_00_5": -1024.0,
|
440 |
+
"percentile_99_5": 276.0,
|
441 |
+
"std": 436.5998675471528
|
442 |
+
}
|
443 |
+
}
|
444 |
+
}
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/._.DS_Store
ADDED
Binary file (4.1 kB). View file
|
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store
ADDED
Binary file (4.1 kB). View file
|
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Segmentation of X",
|
3 |
+
"description": "Segmentation",
|
4 |
+
"reference": "Jakob",
|
5 |
+
"licence": "-",
|
6 |
+
"release": "0.0",
|
7 |
+
"labels": {
|
8 |
+
"background": 0,
|
9 |
+
"sacrum": 1,
|
10 |
+
"vertebrae_S1": 2,
|
11 |
+
"vertebrae_L5": 3,
|
12 |
+
"vertebrae_L4": 4,
|
13 |
+
"vertebrae_L3": 5,
|
14 |
+
"vertebrae_L2": 6,
|
15 |
+
"vertebrae_L1": 7,
|
16 |
+
"vertebrae_T12": 8,
|
17 |
+
"vertebrae_T11": 9,
|
18 |
+
"vertebrae_T10": 10,
|
19 |
+
"vertebrae_T9": 11,
|
20 |
+
"vertebrae_T8": 12,
|
21 |
+
"vertebrae_T7": 13,
|
22 |
+
"vertebrae_T6": 14,
|
23 |
+
"vertebrae_T5": 15,
|
24 |
+
"vertebrae_T4": 16,
|
25 |
+
"vertebrae_T3": 17,
|
26 |
+
"vertebrae_T2": 18,
|
27 |
+
"vertebrae_T1": 19,
|
28 |
+
"vertebrae_C7": 20,
|
29 |
+
"vertebrae_C6": 21,
|
30 |
+
"vertebrae_C5": 22,
|
31 |
+
"vertebrae_C4": 23,
|
32 |
+
"vertebrae_C3": 24,
|
33 |
+
"vertebrae_C2": 25,
|
34 |
+
"vertebrae_C1": 26
|
35 |
+
},
|
36 |
+
"numTraining": 1532,
|
37 |
+
"channel_names": {
|
38 |
+
"0": "CT"
|
39 |
+
},
|
40 |
+
"file_ending": ".nii.gz",
|
41 |
+
"overwrite_image_reader_writer": "NibabelIOWithReorient"
|
42 |
+
}
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7022f71829ef00aa14d790a7667bc18eb1691f2fe5b0a38c475862abc84c2457
|
3 |
+
size 251848251
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [225.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8700,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f0fa01ff190>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f0fa01ff0d0>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f0fa01ffd60>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f0fa01ffcd0>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'sacrum': 1, 'vertebrae_S1': 2, 'vertebrae_L5': 3, 'vertebrae_L4': 4, 'vertebrae_L3': 5, 'vertebrae_L2': 6, 'vertebrae_L1': 7, 'vertebrae_T12': 8, 'vertebrae_T11': 9, 'vertebrae_T10': 10, 'vertebrae_T9': 11, 'vertebrae_T8': 12, 'vertebrae_T7': 13, 'vertebrae_T6': 14, 'vertebrae_T5': 15, 'vertebrae_T4': 16, 'vertebrae_T3': 17, 'vertebrae_T2': 18, 'vertebrae_T1': 19, 'vertebrae_C7': 20, 'vertebrae_C6': 21, 'vertebrae_C5': 22, 'vertebrae_C4': 23, 'vertebrae_C3': 24, 'vertebrae_C2': 25, 'vertebrae_C1': 26}, 'numTraining': 1532, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f0fa98b76a0>",
|
23 |
+
"hostname": "rndapollolp01.uhbs.ch",
|
24 |
+
"inference_allowed_mirroring_axes": "None",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f0fa98b7640>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/mnt/nor/nnunet/results_v2/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_6_28_11_19_44.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f0fa98b78b0>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f0fa9a65f40>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset292_TotalSegmentator_part2_vertebrae_1532subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [225, 227, 239], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [194, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [225.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 36911.0, 'mean': 367.32929817099546, 'median': 283.0, 'min': -34461.0, 'percentile_00_5': -96.0, 'percentile_99_5': 1514.0, 'std': 320.8587389393513}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'sacrum': 1, 'vertebrae_S1': 2, 'vertebrae_L5': 3, 'vertebrae_L4': 4, 'vertebrae_L3': 5, 'vertebrae_L2': 6, 'vertebrae_L1': 7, 'vertebrae_T12': 8, 'vertebrae_T11': 9, 'vertebrae_T10': 10, 'vertebrae_T9': 11, 'vertebrae_T8': 12, 'vertebrae_T7': 13, 'vertebrae_T6': 14, 'vertebrae_T5': 15, 'vertebrae_T4': 16, 'vertebrae_T3': 17, 'vertebrae_T2': 18, 'vertebrae_T1': 19, 'vertebrae_C7': 20, 'vertebrae_C6': 21, 'vertebrae_C5': 22, 'vertebrae_C4': 23, 'vertebrae_C3': 24, 'vertebrae_C2': 25, 'vertebrae_C1': 26}, 'numTraining': 1532, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/mnt/nor/nnunet/results_v2/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
|
42 |
+
"output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset292_TotalSegmentator_part2_vertebrae_1532subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [225, 227, 239], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [194, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [225.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 36911.0, 'mean': 367.32929817099546, 'median': 283.0, 'min': -34461.0, 'percentile_00_5': -96.0, 'percentile_99_5': 1514.0, 'std': 320.8587389393513}}}",
|
45 |
+
"preprocessed_dataset_folder": "/dojo/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/dojo/Dataset292_TotalSegmentator_part2_vertebrae_1532subj",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.0",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset292_TotalSegmentator_part2_vertebrae_1532subj",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.5,
|
6 |
+
1.5,
|
7 |
+
1.5
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
225,
|
11 |
+
227,
|
12 |
+
239
|
13 |
+
],
|
14 |
+
"image_reader_writer": "NibabelIOWithReorient",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 46,
|
30 |
+
"patch_size": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
227.0,
|
36 |
+
239.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.5,
|
40 |
+
1.5
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"CTNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2,
|
57 |
+
2
|
58 |
+
],
|
59 |
+
"n_conv_per_stage_decoder": [
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"num_pool_per_axis": [
|
68 |
+
6,
|
69 |
+
6
|
70 |
+
],
|
71 |
+
"pool_op_kernel_sizes": [
|
72 |
+
[
|
73 |
+
1,
|
74 |
+
1
|
75 |
+
],
|
76 |
+
[
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
[
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
[
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
[
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
[
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
2
|
99 |
+
]
|
100 |
+
],
|
101 |
+
"conv_kernel_sizes": [
|
102 |
+
[
|
103 |
+
3,
|
104 |
+
3
|
105 |
+
],
|
106 |
+
[
|
107 |
+
3,
|
108 |
+
3
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3,
|
112 |
+
3
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3,
|
116 |
+
3
|
117 |
+
],
|
118 |
+
[
|
119 |
+
3,
|
120 |
+
3
|
121 |
+
],
|
122 |
+
[
|
123 |
+
3,
|
124 |
+
3
|
125 |
+
],
|
126 |
+
[
|
127 |
+
3,
|
128 |
+
3
|
129 |
+
]
|
130 |
+
],
|
131 |
+
"unet_max_num_features": 512,
|
132 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
133 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
134 |
+
"resampling_fn_data_kwargs": {
|
135 |
+
"is_seg": false,
|
136 |
+
"order": 3,
|
137 |
+
"order_z": 0,
|
138 |
+
"force_separate_z": null
|
139 |
+
},
|
140 |
+
"resampling_fn_seg_kwargs": {
|
141 |
+
"is_seg": true,
|
142 |
+
"order": 1,
|
143 |
+
"order_z": 0,
|
144 |
+
"force_separate_z": null
|
145 |
+
},
|
146 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
147 |
+
"resampling_fn_probabilities_kwargs": {
|
148 |
+
"is_seg": false,
|
149 |
+
"order": 1,
|
150 |
+
"order_z": 0,
|
151 |
+
"force_separate_z": null
|
152 |
+
},
|
153 |
+
"batch_dice": true
|
154 |
+
},
|
155 |
+
"3d_lowres": {
|
156 |
+
"data_identifier": "nnUNetPlans_3d_lowres",
|
157 |
+
"preprocessor_name": "DefaultPreprocessor",
|
158 |
+
"batch_size": 2,
|
159 |
+
"patch_size": [
|
160 |
+
128,
|
161 |
+
128,
|
162 |
+
128
|
163 |
+
],
|
164 |
+
"median_image_size_in_voxels": [
|
165 |
+
194,
|
166 |
+
196,
|
167 |
+
206
|
168 |
+
],
|
169 |
+
"spacing": [
|
170 |
+
1.7389111114500002,
|
171 |
+
1.7389111114500002,
|
172 |
+
1.7389111114500002
|
173 |
+
],
|
174 |
+
"normalization_schemes": [
|
175 |
+
"CTNormalization"
|
176 |
+
],
|
177 |
+
"use_mask_for_norm": [
|
178 |
+
false
|
179 |
+
],
|
180 |
+
"UNet_class_name": "PlainConvUNet",
|
181 |
+
"UNet_base_num_features": 32,
|
182 |
+
"n_conv_per_stage_encoder": [
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2,
|
186 |
+
2,
|
187 |
+
2,
|
188 |
+
2
|
189 |
+
],
|
190 |
+
"n_conv_per_stage_decoder": [
|
191 |
+
2,
|
192 |
+
2,
|
193 |
+
2,
|
194 |
+
2,
|
195 |
+
2
|
196 |
+
],
|
197 |
+
"num_pool_per_axis": [
|
198 |
+
5,
|
199 |
+
5,
|
200 |
+
5
|
201 |
+
],
|
202 |
+
"pool_op_kernel_sizes": [
|
203 |
+
[
|
204 |
+
1,
|
205 |
+
1,
|
206 |
+
1
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
],
|
223 |
+
[
|
224 |
+
2,
|
225 |
+
2,
|
226 |
+
2
|
227 |
+
],
|
228 |
+
[
|
229 |
+
2,
|
230 |
+
2,
|
231 |
+
2
|
232 |
+
]
|
233 |
+
],
|
234 |
+
"conv_kernel_sizes": [
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
],
|
255 |
+
[
|
256 |
+
3,
|
257 |
+
3,
|
258 |
+
3
|
259 |
+
],
|
260 |
+
[
|
261 |
+
3,
|
262 |
+
3,
|
263 |
+
3
|
264 |
+
]
|
265 |
+
],
|
266 |
+
"unet_max_num_features": 320,
|
267 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
268 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
269 |
+
"resampling_fn_data_kwargs": {
|
270 |
+
"is_seg": false,
|
271 |
+
"order": 3,
|
272 |
+
"order_z": 0,
|
273 |
+
"force_separate_z": null
|
274 |
+
},
|
275 |
+
"resampling_fn_seg_kwargs": {
|
276 |
+
"is_seg": true,
|
277 |
+
"order": 1,
|
278 |
+
"order_z": 0,
|
279 |
+
"force_separate_z": null
|
280 |
+
},
|
281 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
282 |
+
"resampling_fn_probabilities_kwargs": {
|
283 |
+
"is_seg": false,
|
284 |
+
"order": 1,
|
285 |
+
"order_z": 0,
|
286 |
+
"force_separate_z": null
|
287 |
+
},
|
288 |
+
"batch_dice": false,
|
289 |
+
"next_stage": "3d_cascade_fullres"
|
290 |
+
},
|
291 |
+
"3d_fullres": {
|
292 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
293 |
+
"preprocessor_name": "DefaultPreprocessor",
|
294 |
+
"batch_size": 2,
|
295 |
+
"patch_size": [
|
296 |
+
128,
|
297 |
+
128,
|
298 |
+
128
|
299 |
+
],
|
300 |
+
"median_image_size_in_voxels": [
|
301 |
+
225.0,
|
302 |
+
227.0,
|
303 |
+
239.0
|
304 |
+
],
|
305 |
+
"spacing": [
|
306 |
+
1.5,
|
307 |
+
1.5,
|
308 |
+
1.5
|
309 |
+
],
|
310 |
+
"normalization_schemes": [
|
311 |
+
"CTNormalization"
|
312 |
+
],
|
313 |
+
"use_mask_for_norm": [
|
314 |
+
false
|
315 |
+
],
|
316 |
+
"UNet_class_name": "PlainConvUNet",
|
317 |
+
"UNet_base_num_features": 32,
|
318 |
+
"n_conv_per_stage_encoder": [
|
319 |
+
2,
|
320 |
+
2,
|
321 |
+
2,
|
322 |
+
2,
|
323 |
+
2,
|
324 |
+
2
|
325 |
+
],
|
326 |
+
"n_conv_per_stage_decoder": [
|
327 |
+
2,
|
328 |
+
2,
|
329 |
+
2,
|
330 |
+
2,
|
331 |
+
2
|
332 |
+
],
|
333 |
+
"num_pool_per_axis": [
|
334 |
+
5,
|
335 |
+
5,
|
336 |
+
5
|
337 |
+
],
|
338 |
+
"pool_op_kernel_sizes": [
|
339 |
+
[
|
340 |
+
1,
|
341 |
+
1,
|
342 |
+
1
|
343 |
+
],
|
344 |
+
[
|
345 |
+
2,
|
346 |
+
2,
|
347 |
+
2
|
348 |
+
],
|
349 |
+
[
|
350 |
+
2,
|
351 |
+
2,
|
352 |
+
2
|
353 |
+
],
|
354 |
+
[
|
355 |
+
2,
|
356 |
+
2,
|
357 |
+
2
|
358 |
+
],
|
359 |
+
[
|
360 |
+
2,
|
361 |
+
2,
|
362 |
+
2
|
363 |
+
],
|
364 |
+
[
|
365 |
+
2,
|
366 |
+
2,
|
367 |
+
2
|
368 |
+
]
|
369 |
+
],
|
370 |
+
"conv_kernel_sizes": [
|
371 |
+
[
|
372 |
+
3,
|
373 |
+
3,
|
374 |
+
3
|
375 |
+
],
|
376 |
+
[
|
377 |
+
3,
|
378 |
+
3,
|
379 |
+
3
|
380 |
+
],
|
381 |
+
[
|
382 |
+
3,
|
383 |
+
3,
|
384 |
+
3
|
385 |
+
],
|
386 |
+
[
|
387 |
+
3,
|
388 |
+
3,
|
389 |
+
3
|
390 |
+
],
|
391 |
+
[
|
392 |
+
3,
|
393 |
+
3,
|
394 |
+
3
|
395 |
+
],
|
396 |
+
[
|
397 |
+
3,
|
398 |
+
3,
|
399 |
+
3
|
400 |
+
]
|
401 |
+
],
|
402 |
+
"unet_max_num_features": 320,
|
403 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
404 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
405 |
+
"resampling_fn_data_kwargs": {
|
406 |
+
"is_seg": false,
|
407 |
+
"order": 3,
|
408 |
+
"order_z": 0,
|
409 |
+
"force_separate_z": null
|
410 |
+
},
|
411 |
+
"resampling_fn_seg_kwargs": {
|
412 |
+
"is_seg": true,
|
413 |
+
"order": 1,
|
414 |
+
"order_z": 0,
|
415 |
+
"force_separate_z": null
|
416 |
+
},
|
417 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
418 |
+
"resampling_fn_probabilities_kwargs": {
|
419 |
+
"is_seg": false,
|
420 |
+
"order": 1,
|
421 |
+
"order_z": 0,
|
422 |
+
"force_separate_z": null
|
423 |
+
},
|
424 |
+
"batch_dice": true
|
425 |
+
},
|
426 |
+
"3d_cascade_fullres": {
|
427 |
+
"inherits_from": "3d_fullres",
|
428 |
+
"previous_stage": "3d_lowres"
|
429 |
+
}
|
430 |
+
},
|
431 |
+
"experiment_planner_used": "ExperimentPlanner",
|
432 |
+
"label_manager": "LabelManager",
|
433 |
+
"foreground_intensity_properties_per_channel": {
|
434 |
+
"0": {
|
435 |
+
"max": 36911.0,
|
436 |
+
"mean": 367.32929817099546,
|
437 |
+
"median": 283.0,
|
438 |
+
"min": -34461.0,
|
439 |
+
"percentile_00_5": -96.0,
|
440 |
+
"percentile_99_5": 1514.0,
|
441 |
+
"std": 320.8587389393513
|
442 |
+
}
|
443 |
+
}
|
444 |
+
}
|
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Segmentation of X",
|
3 |
+
"description": "Segmentation",
|
4 |
+
"reference": "Jakob",
|
5 |
+
"licence": "-",
|
6 |
+
"release": "0.0",
|
7 |
+
"channel_names": {
|
8 |
+
"0": "CT"
|
9 |
+
},
|
10 |
+
"labels": {
|
11 |
+
"background": 0,
|
12 |
+
"heart": 1,
|
13 |
+
"aorta": 2,
|
14 |
+
"pulmonary_vein": 3,
|
15 |
+
"brachiocephalic_trunk": 4,
|
16 |
+
"subclavian_artery_right": 5,
|
17 |
+
"subclavian_artery_left": 6,
|
18 |
+
"common_carotid_artery_right": 7,
|
19 |
+
"common_carotid_artery_left": 8,
|
20 |
+
"brachiocephalic_vein_left": 9,
|
21 |
+
"brachiocephalic_vein_right": 10,
|
22 |
+
"atrial_appendage_left": 11,
|
23 |
+
"superior_vena_cava": 12,
|
24 |
+
"inferior_vena_cava": 13,
|
25 |
+
"portal_vein_and_splenic_vein": 14,
|
26 |
+
"iliac_artery_left": 15,
|
27 |
+
"iliac_artery_right": 16,
|
28 |
+
"iliac_vena_left": 17,
|
29 |
+
"iliac_vena_right": 18
|
30 |
+
},
|
31 |
+
"numTraining": 1559,
|
32 |
+
"file_ending": ".nii.gz",
|
33 |
+
"overwrite_image_reader_writer": "NibabelIOWithReorient"
|
34 |
+
}
|
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:189010ac67fec3f1704df7547306d0067eabaaf620e0a46a1bdd183afa0800e4
|
3 |
+
size 251268859
|
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8700,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f6f27071eb0>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f6f270710a0>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f6f27071760>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f6f270716d0>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'heart': 1, 'aorta': 2, 'pulmonary_vein': 3, 'brachiocephalic_trunk': 4, 'subclavian_artery_right': 5, 'subclavian_artery_left': 6, 'common_carotid_artery_right': 7, 'common_carotid_artery_left': 8, 'brachiocephalic_vein_left': 9, 'brachiocephalic_vein_right': 10, 'atrial_appendage_left': 11, 'superior_vena_cava': 12, 'inferior_vena_cava': 13, 'portal_vein_and_splenic_vein': 14, 'iliac_artery_left': 15, 'iliac_artery_right': 16, 'iliac_vena_left': 17, 'iliac_vena_right': 18}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f6f37e7eca0>",
|
23 |
+
"hostname": "rndapollolp01.uhbs.ch",
|
24 |
+
"inference_allowed_mirroring_axes": "None",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f6f37e7ed90>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/mnt/nor/nnunet/results_v2/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_8_11_15_45.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f6f37e7ef40>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f6f37e7edf0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset293_TotalSegmentator_part3_cardiac_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 47, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 6666.0, 'mean': 142.1977119916391, 'median': 108.0, 'min': -1551.0, 'percentile_00_5': -101.0, 'percentile_99_5': 813.0, 'std': 154.74032651622053}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'heart': 1, 'aorta': 2, 'pulmonary_vein': 3, 'brachiocephalic_trunk': 4, 'subclavian_artery_right': 5, 'subclavian_artery_left': 6, 'common_carotid_artery_right': 7, 'common_carotid_artery_left': 8, 'brachiocephalic_vein_left': 9, 'brachiocephalic_vein_right': 10, 'atrial_appendage_left': 11, 'superior_vena_cava': 12, 'inferior_vena_cava': 13, 'portal_vein_and_splenic_vein': 14, 'iliac_artery_left': 15, 'iliac_artery_right': 16, 'iliac_vena_left': 17, 'iliac_vena_right': 18}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/mnt/nor/nnunet/results_v2/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
|
42 |
+
"output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset293_TotalSegmentator_part3_cardiac_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 47, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 6666.0, 'mean': 142.1977119916391, 'median': 108.0, 'min': -1551.0, 'percentile_00_5': -101.0, 'percentile_99_5': 813.0, 'std': 154.74032651622053}}}",
|
45 |
+
"preprocessed_dataset_folder": "/dojo/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/dojo/Dataset293_TotalSegmentator_part3_cardiac_1559subj",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.0",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset293_TotalSegmentator_part3_cardiac_1559subj",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.5,
|
6 |
+
1.5,
|
7 |
+
1.5
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
227,
|
11 |
+
227,
|
12 |
+
240
|
13 |
+
],
|
14 |
+
"image_reader_writer": "NibabelIOWithReorient",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 47,
|
30 |
+
"patch_size": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
227.0,
|
36 |
+
239.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.5,
|
40 |
+
1.5
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"CTNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2,
|
57 |
+
2
|
58 |
+
],
|
59 |
+
"n_conv_per_stage_decoder": [
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"num_pool_per_axis": [
|
68 |
+
6,
|
69 |
+
6
|
70 |
+
],
|
71 |
+
"pool_op_kernel_sizes": [
|
72 |
+
[
|
73 |
+
1,
|
74 |
+
1
|
75 |
+
],
|
76 |
+
[
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
[
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
[
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
[
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
[
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
2
|
99 |
+
]
|
100 |
+
],
|
101 |
+
"conv_kernel_sizes": [
|
102 |
+
[
|
103 |
+
3,
|
104 |
+
3
|
105 |
+
],
|
106 |
+
[
|
107 |
+
3,
|
108 |
+
3
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3,
|
112 |
+
3
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3,
|
116 |
+
3
|
117 |
+
],
|
118 |
+
[
|
119 |
+
3,
|
120 |
+
3
|
121 |
+
],
|
122 |
+
[
|
123 |
+
3,
|
124 |
+
3
|
125 |
+
],
|
126 |
+
[
|
127 |
+
3,
|
128 |
+
3
|
129 |
+
]
|
130 |
+
],
|
131 |
+
"unet_max_num_features": 512,
|
132 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
133 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
134 |
+
"resampling_fn_data_kwargs": {
|
135 |
+
"is_seg": false,
|
136 |
+
"order": 3,
|
137 |
+
"order_z": 0,
|
138 |
+
"force_separate_z": null
|
139 |
+
},
|
140 |
+
"resampling_fn_seg_kwargs": {
|
141 |
+
"is_seg": true,
|
142 |
+
"order": 1,
|
143 |
+
"order_z": 0,
|
144 |
+
"force_separate_z": null
|
145 |
+
},
|
146 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
147 |
+
"resampling_fn_probabilities_kwargs": {
|
148 |
+
"is_seg": false,
|
149 |
+
"order": 1,
|
150 |
+
"order_z": 0,
|
151 |
+
"force_separate_z": null
|
152 |
+
},
|
153 |
+
"batch_dice": true
|
154 |
+
},
|
155 |
+
"3d_lowres": {
|
156 |
+
"data_identifier": "nnUNetPlans_3d_lowres",
|
157 |
+
"preprocessor_name": "DefaultPreprocessor",
|
158 |
+
"batch_size": 2,
|
159 |
+
"patch_size": [
|
160 |
+
128,
|
161 |
+
128,
|
162 |
+
128
|
163 |
+
],
|
164 |
+
"median_image_size_in_voxels": [
|
165 |
+
196,
|
166 |
+
196,
|
167 |
+
206
|
168 |
+
],
|
169 |
+
"spacing": [
|
170 |
+
1.7389111114500002,
|
171 |
+
1.7389111114500002,
|
172 |
+
1.7389111114500002
|
173 |
+
],
|
174 |
+
"normalization_schemes": [
|
175 |
+
"CTNormalization"
|
176 |
+
],
|
177 |
+
"use_mask_for_norm": [
|
178 |
+
false
|
179 |
+
],
|
180 |
+
"UNet_class_name": "PlainConvUNet",
|
181 |
+
"UNet_base_num_features": 32,
|
182 |
+
"n_conv_per_stage_encoder": [
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2,
|
186 |
+
2,
|
187 |
+
2,
|
188 |
+
2
|
189 |
+
],
|
190 |
+
"n_conv_per_stage_decoder": [
|
191 |
+
2,
|
192 |
+
2,
|
193 |
+
2,
|
194 |
+
2,
|
195 |
+
2
|
196 |
+
],
|
197 |
+
"num_pool_per_axis": [
|
198 |
+
5,
|
199 |
+
5,
|
200 |
+
5
|
201 |
+
],
|
202 |
+
"pool_op_kernel_sizes": [
|
203 |
+
[
|
204 |
+
1,
|
205 |
+
1,
|
206 |
+
1
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
],
|
223 |
+
[
|
224 |
+
2,
|
225 |
+
2,
|
226 |
+
2
|
227 |
+
],
|
228 |
+
[
|
229 |
+
2,
|
230 |
+
2,
|
231 |
+
2
|
232 |
+
]
|
233 |
+
],
|
234 |
+
"conv_kernel_sizes": [
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
],
|
255 |
+
[
|
256 |
+
3,
|
257 |
+
3,
|
258 |
+
3
|
259 |
+
],
|
260 |
+
[
|
261 |
+
3,
|
262 |
+
3,
|
263 |
+
3
|
264 |
+
]
|
265 |
+
],
|
266 |
+
"unet_max_num_features": 320,
|
267 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
268 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
269 |
+
"resampling_fn_data_kwargs": {
|
270 |
+
"is_seg": false,
|
271 |
+
"order": 3,
|
272 |
+
"order_z": 0,
|
273 |
+
"force_separate_z": null
|
274 |
+
},
|
275 |
+
"resampling_fn_seg_kwargs": {
|
276 |
+
"is_seg": true,
|
277 |
+
"order": 1,
|
278 |
+
"order_z": 0,
|
279 |
+
"force_separate_z": null
|
280 |
+
},
|
281 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
282 |
+
"resampling_fn_probabilities_kwargs": {
|
283 |
+
"is_seg": false,
|
284 |
+
"order": 1,
|
285 |
+
"order_z": 0,
|
286 |
+
"force_separate_z": null
|
287 |
+
},
|
288 |
+
"batch_dice": false,
|
289 |
+
"next_stage": "3d_cascade_fullres"
|
290 |
+
},
|
291 |
+
"3d_fullres": {
|
292 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
293 |
+
"preprocessor_name": "DefaultPreprocessor",
|
294 |
+
"batch_size": 2,
|
295 |
+
"patch_size": [
|
296 |
+
128,
|
297 |
+
128,
|
298 |
+
128
|
299 |
+
],
|
300 |
+
"median_image_size_in_voxels": [
|
301 |
+
227.0,
|
302 |
+
227.0,
|
303 |
+
239.0
|
304 |
+
],
|
305 |
+
"spacing": [
|
306 |
+
1.5,
|
307 |
+
1.5,
|
308 |
+
1.5
|
309 |
+
],
|
310 |
+
"normalization_schemes": [
|
311 |
+
"CTNormalization"
|
312 |
+
],
|
313 |
+
"use_mask_for_norm": [
|
314 |
+
false
|
315 |
+
],
|
316 |
+
"UNet_class_name": "PlainConvUNet",
|
317 |
+
"UNet_base_num_features": 32,
|
318 |
+
"n_conv_per_stage_encoder": [
|
319 |
+
2,
|
320 |
+
2,
|
321 |
+
2,
|
322 |
+
2,
|
323 |
+
2,
|
324 |
+
2
|
325 |
+
],
|
326 |
+
"n_conv_per_stage_decoder": [
|
327 |
+
2,
|
328 |
+
2,
|
329 |
+
2,
|
330 |
+
2,
|
331 |
+
2
|
332 |
+
],
|
333 |
+
"num_pool_per_axis": [
|
334 |
+
5,
|
335 |
+
5,
|
336 |
+
5
|
337 |
+
],
|
338 |
+
"pool_op_kernel_sizes": [
|
339 |
+
[
|
340 |
+
1,
|
341 |
+
1,
|
342 |
+
1
|
343 |
+
],
|
344 |
+
[
|
345 |
+
2,
|
346 |
+
2,
|
347 |
+
2
|
348 |
+
],
|
349 |
+
[
|
350 |
+
2,
|
351 |
+
2,
|
352 |
+
2
|
353 |
+
],
|
354 |
+
[
|
355 |
+
2,
|
356 |
+
2,
|
357 |
+
2
|
358 |
+
],
|
359 |
+
[
|
360 |
+
2,
|
361 |
+
2,
|
362 |
+
2
|
363 |
+
],
|
364 |
+
[
|
365 |
+
2,
|
366 |
+
2,
|
367 |
+
2
|
368 |
+
]
|
369 |
+
],
|
370 |
+
"conv_kernel_sizes": [
|
371 |
+
[
|
372 |
+
3,
|
373 |
+
3,
|
374 |
+
3
|
375 |
+
],
|
376 |
+
[
|
377 |
+
3,
|
378 |
+
3,
|
379 |
+
3
|
380 |
+
],
|
381 |
+
[
|
382 |
+
3,
|
383 |
+
3,
|
384 |
+
3
|
385 |
+
],
|
386 |
+
[
|
387 |
+
3,
|
388 |
+
3,
|
389 |
+
3
|
390 |
+
],
|
391 |
+
[
|
392 |
+
3,
|
393 |
+
3,
|
394 |
+
3
|
395 |
+
],
|
396 |
+
[
|
397 |
+
3,
|
398 |
+
3,
|
399 |
+
3
|
400 |
+
]
|
401 |
+
],
|
402 |
+
"unet_max_num_features": 320,
|
403 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
404 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
405 |
+
"resampling_fn_data_kwargs": {
|
406 |
+
"is_seg": false,
|
407 |
+
"order": 3,
|
408 |
+
"order_z": 0,
|
409 |
+
"force_separate_z": null
|
410 |
+
},
|
411 |
+
"resampling_fn_seg_kwargs": {
|
412 |
+
"is_seg": true,
|
413 |
+
"order": 1,
|
414 |
+
"order_z": 0,
|
415 |
+
"force_separate_z": null
|
416 |
+
},
|
417 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
418 |
+
"resampling_fn_probabilities_kwargs": {
|
419 |
+
"is_seg": false,
|
420 |
+
"order": 1,
|
421 |
+
"order_z": 0,
|
422 |
+
"force_separate_z": null
|
423 |
+
},
|
424 |
+
"batch_dice": true
|
425 |
+
},
|
426 |
+
"3d_cascade_fullres": {
|
427 |
+
"inherits_from": "3d_fullres",
|
428 |
+
"previous_stage": "3d_lowres"
|
429 |
+
}
|
430 |
+
},
|
431 |
+
"experiment_planner_used": "ExperimentPlanner",
|
432 |
+
"label_manager": "LabelManager",
|
433 |
+
"foreground_intensity_properties_per_channel": {
|
434 |
+
"0": {
|
435 |
+
"max": 6666.0,
|
436 |
+
"mean": 142.1977119916391,
|
437 |
+
"median": 108.0,
|
438 |
+
"min": -1551.0,
|
439 |
+
"percentile_00_5": -101.0,
|
440 |
+
"percentile_99_5": 813.0,
|
441 |
+
"std": 154.74032651622053
|
442 |
+
}
|
443 |
+
}
|
444 |
+
}
|
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Segmentation of X",
|
3 |
+
"description": "Segmentation",
|
4 |
+
"reference": "Jakob",
|
5 |
+
"licence": "-",
|
6 |
+
"release": "0.0",
|
7 |
+
"channel_names": {
|
8 |
+
"0": "CT"
|
9 |
+
},
|
10 |
+
"labels": {
|
11 |
+
"background": 0,
|
12 |
+
"humerus_left": 1,
|
13 |
+
"humerus_right": 2,
|
14 |
+
"scapula_left": 3,
|
15 |
+
"scapula_right": 4,
|
16 |
+
"clavicula_left": 5,
|
17 |
+
"clavicula_right": 6,
|
18 |
+
"femur_left": 7,
|
19 |
+
"femur_right": 8,
|
20 |
+
"hip_left": 9,
|
21 |
+
"hip_right": 10,
|
22 |
+
"spinal_cord": 11,
|
23 |
+
"gluteus_maximus_left": 12,
|
24 |
+
"gluteus_maximus_right": 13,
|
25 |
+
"gluteus_medius_left": 14,
|
26 |
+
"gluteus_medius_right": 15,
|
27 |
+
"gluteus_minimus_left": 16,
|
28 |
+
"gluteus_minimus_right": 17,
|
29 |
+
"autochthon_left": 18,
|
30 |
+
"autochthon_right": 19,
|
31 |
+
"iliopsoas_left": 20,
|
32 |
+
"iliopsoas_right": 21,
|
33 |
+
"brain": 22,
|
34 |
+
"skull": 23
|
35 |
+
},
|
36 |
+
"numTraining": 1559,
|
37 |
+
"file_ending": ".nii.gz",
|
38 |
+
"overwrite_image_reader_writer": "NibabelIOWithReorient"
|
39 |
+
}
|
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:655eb40de03aa3de7348b69d7569a1cc3a2dc7969a11c0d60a7331e07df11c28
|
3 |
+
size 251633339
|
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8700,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f2f6c3131c0>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f2f6c313d60>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f2f6c313100>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f2f6c313370>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'humerus_left': 1, 'humerus_right': 2, 'scapula_left': 3, 'scapula_right': 4, 'clavicula_left': 5, 'clavicula_right': 6, 'femur_left': 7, 'femur_right': 8, 'hip_left': 9, 'hip_right': 10, 'spinal_cord': 11, 'gluteus_maximus_left': 12, 'gluteus_maximus_right': 13, 'gluteus_medius_left': 14, 'gluteus_medius_right': 15, 'gluteus_minimus_left': 16, 'gluteus_minimus_right': 17, 'autochthon_left': 18, 'autochthon_right': 19, 'iliopsoas_left': 20, 'iliopsoas_right': 21, 'brain': 22, 'skull': 23}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f2f727c0dc0>",
|
23 |
+
"hostname": "rndapollolp01.uhbs.ch",
|
24 |
+
"inference_allowed_mirroring_axes": "None",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f2f727c0e50>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/mnt/nor/nnunet/results_v2/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_8_12_49_07.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f2f727c06a0>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f2f7270c2b0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset294_TotalSegmentator_part4_muscles_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 44594.0, 'mean': 174.82106003593222, 'median': 52.0, 'min': -49831.0, 'percentile_00_5': -197.0, 'percentile_99_5': 1729.0, 'std': 362.496044938386}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'humerus_left': 1, 'humerus_right': 2, 'scapula_left': 3, 'scapula_right': 4, 'clavicula_left': 5, 'clavicula_right': 6, 'femur_left': 7, 'femur_right': 8, 'hip_left': 9, 'hip_right': 10, 'spinal_cord': 11, 'gluteus_maximus_left': 12, 'gluteus_maximus_right': 13, 'gluteus_medius_left': 14, 'gluteus_medius_right': 15, 'gluteus_minimus_left': 16, 'gluteus_minimus_right': 17, 'autochthon_left': 18, 'autochthon_right': 19, 'iliopsoas_left': 20, 'iliopsoas_right': 21, 'brain': 22, 'skull': 23}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/mnt/nor/nnunet/results_v2/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
|
42 |
+
"output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset294_TotalSegmentator_part4_muscles_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 44594.0, 'mean': 174.82106003593222, 'median': 52.0, 'min': -49831.0, 'percentile_00_5': -197.0, 'percentile_99_5': 1729.0, 'std': 362.496044938386}}}",
|
45 |
+
"preprocessed_dataset_folder": "/dojo/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/dojo/Dataset294_TotalSegmentator_part4_muscles_1559subj",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.0",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset294_TotalSegmentator_part4_muscles_1559subj",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.5,
|
6 |
+
1.5,
|
7 |
+
1.5
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
227,
|
11 |
+
227,
|
12 |
+
240
|
13 |
+
],
|
14 |
+
"image_reader_writer": "NibabelIOWithReorient",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 46,
|
30 |
+
"patch_size": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
227.0,
|
36 |
+
239.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.5,
|
40 |
+
1.5
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"CTNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2,
|
57 |
+
2
|
58 |
+
],
|
59 |
+
"n_conv_per_stage_decoder": [
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"num_pool_per_axis": [
|
68 |
+
6,
|
69 |
+
6
|
70 |
+
],
|
71 |
+
"pool_op_kernel_sizes": [
|
72 |
+
[
|
73 |
+
1,
|
74 |
+
1
|
75 |
+
],
|
76 |
+
[
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
[
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
[
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
[
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
[
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
2
|
99 |
+
]
|
100 |
+
],
|
101 |
+
"conv_kernel_sizes": [
|
102 |
+
[
|
103 |
+
3,
|
104 |
+
3
|
105 |
+
],
|
106 |
+
[
|
107 |
+
3,
|
108 |
+
3
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3,
|
112 |
+
3
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3,
|
116 |
+
3
|
117 |
+
],
|
118 |
+
[
|
119 |
+
3,
|
120 |
+
3
|
121 |
+
],
|
122 |
+
[
|
123 |
+
3,
|
124 |
+
3
|
125 |
+
],
|
126 |
+
[
|
127 |
+
3,
|
128 |
+
3
|
129 |
+
]
|
130 |
+
],
|
131 |
+
"unet_max_num_features": 512,
|
132 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
133 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
134 |
+
"resampling_fn_data_kwargs": {
|
135 |
+
"is_seg": false,
|
136 |
+
"order": 3,
|
137 |
+
"order_z": 0,
|
138 |
+
"force_separate_z": null
|
139 |
+
},
|
140 |
+
"resampling_fn_seg_kwargs": {
|
141 |
+
"is_seg": true,
|
142 |
+
"order": 1,
|
143 |
+
"order_z": 0,
|
144 |
+
"force_separate_z": null
|
145 |
+
},
|
146 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
147 |
+
"resampling_fn_probabilities_kwargs": {
|
148 |
+
"is_seg": false,
|
149 |
+
"order": 1,
|
150 |
+
"order_z": 0,
|
151 |
+
"force_separate_z": null
|
152 |
+
},
|
153 |
+
"batch_dice": true
|
154 |
+
},
|
155 |
+
"3d_lowres": {
|
156 |
+
"data_identifier": "nnUNetPlans_3d_lowres",
|
157 |
+
"preprocessor_name": "DefaultPreprocessor",
|
158 |
+
"batch_size": 2,
|
159 |
+
"patch_size": [
|
160 |
+
128,
|
161 |
+
128,
|
162 |
+
128
|
163 |
+
],
|
164 |
+
"median_image_size_in_voxels": [
|
165 |
+
196,
|
166 |
+
196,
|
167 |
+
206
|
168 |
+
],
|
169 |
+
"spacing": [
|
170 |
+
1.7389111114500002,
|
171 |
+
1.7389111114500002,
|
172 |
+
1.7389111114500002
|
173 |
+
],
|
174 |
+
"normalization_schemes": [
|
175 |
+
"CTNormalization"
|
176 |
+
],
|
177 |
+
"use_mask_for_norm": [
|
178 |
+
false
|
179 |
+
],
|
180 |
+
"UNet_class_name": "PlainConvUNet",
|
181 |
+
"UNet_base_num_features": 32,
|
182 |
+
"n_conv_per_stage_encoder": [
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2,
|
186 |
+
2,
|
187 |
+
2,
|
188 |
+
2
|
189 |
+
],
|
190 |
+
"n_conv_per_stage_decoder": [
|
191 |
+
2,
|
192 |
+
2,
|
193 |
+
2,
|
194 |
+
2,
|
195 |
+
2
|
196 |
+
],
|
197 |
+
"num_pool_per_axis": [
|
198 |
+
5,
|
199 |
+
5,
|
200 |
+
5
|
201 |
+
],
|
202 |
+
"pool_op_kernel_sizes": [
|
203 |
+
[
|
204 |
+
1,
|
205 |
+
1,
|
206 |
+
1
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
],
|
223 |
+
[
|
224 |
+
2,
|
225 |
+
2,
|
226 |
+
2
|
227 |
+
],
|
228 |
+
[
|
229 |
+
2,
|
230 |
+
2,
|
231 |
+
2
|
232 |
+
]
|
233 |
+
],
|
234 |
+
"conv_kernel_sizes": [
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
],
|
255 |
+
[
|
256 |
+
3,
|
257 |
+
3,
|
258 |
+
3
|
259 |
+
],
|
260 |
+
[
|
261 |
+
3,
|
262 |
+
3,
|
263 |
+
3
|
264 |
+
]
|
265 |
+
],
|
266 |
+
"unet_max_num_features": 320,
|
267 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
268 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
269 |
+
"resampling_fn_data_kwargs": {
|
270 |
+
"is_seg": false,
|
271 |
+
"order": 3,
|
272 |
+
"order_z": 0,
|
273 |
+
"force_separate_z": null
|
274 |
+
},
|
275 |
+
"resampling_fn_seg_kwargs": {
|
276 |
+
"is_seg": true,
|
277 |
+
"order": 1,
|
278 |
+
"order_z": 0,
|
279 |
+
"force_separate_z": null
|
280 |
+
},
|
281 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
282 |
+
"resampling_fn_probabilities_kwargs": {
|
283 |
+
"is_seg": false,
|
284 |
+
"order": 1,
|
285 |
+
"order_z": 0,
|
286 |
+
"force_separate_z": null
|
287 |
+
},
|
288 |
+
"batch_dice": false,
|
289 |
+
"next_stage": "3d_cascade_fullres"
|
290 |
+
},
|
291 |
+
"3d_fullres": {
|
292 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
293 |
+
"preprocessor_name": "DefaultPreprocessor",
|
294 |
+
"batch_size": 2,
|
295 |
+
"patch_size": [
|
296 |
+
128,
|
297 |
+
128,
|
298 |
+
128
|
299 |
+
],
|
300 |
+
"median_image_size_in_voxels": [
|
301 |
+
227.0,
|
302 |
+
227.0,
|
303 |
+
239.0
|
304 |
+
],
|
305 |
+
"spacing": [
|
306 |
+
1.5,
|
307 |
+
1.5,
|
308 |
+
1.5
|
309 |
+
],
|
310 |
+
"normalization_schemes": [
|
311 |
+
"CTNormalization"
|
312 |
+
],
|
313 |
+
"use_mask_for_norm": [
|
314 |
+
false
|
315 |
+
],
|
316 |
+
"UNet_class_name": "PlainConvUNet",
|
317 |
+
"UNet_base_num_features": 32,
|
318 |
+
"n_conv_per_stage_encoder": [
|
319 |
+
2,
|
320 |
+
2,
|
321 |
+
2,
|
322 |
+
2,
|
323 |
+
2,
|
324 |
+
2
|
325 |
+
],
|
326 |
+
"n_conv_per_stage_decoder": [
|
327 |
+
2,
|
328 |
+
2,
|
329 |
+
2,
|
330 |
+
2,
|
331 |
+
2
|
332 |
+
],
|
333 |
+
"num_pool_per_axis": [
|
334 |
+
5,
|
335 |
+
5,
|
336 |
+
5
|
337 |
+
],
|
338 |
+
"pool_op_kernel_sizes": [
|
339 |
+
[
|
340 |
+
1,
|
341 |
+
1,
|
342 |
+
1
|
343 |
+
],
|
344 |
+
[
|
345 |
+
2,
|
346 |
+
2,
|
347 |
+
2
|
348 |
+
],
|
349 |
+
[
|
350 |
+
2,
|
351 |
+
2,
|
352 |
+
2
|
353 |
+
],
|
354 |
+
[
|
355 |
+
2,
|
356 |
+
2,
|
357 |
+
2
|
358 |
+
],
|
359 |
+
[
|
360 |
+
2,
|
361 |
+
2,
|
362 |
+
2
|
363 |
+
],
|
364 |
+
[
|
365 |
+
2,
|
366 |
+
2,
|
367 |
+
2
|
368 |
+
]
|
369 |
+
],
|
370 |
+
"conv_kernel_sizes": [
|
371 |
+
[
|
372 |
+
3,
|
373 |
+
3,
|
374 |
+
3
|
375 |
+
],
|
376 |
+
[
|
377 |
+
3,
|
378 |
+
3,
|
379 |
+
3
|
380 |
+
],
|
381 |
+
[
|
382 |
+
3,
|
383 |
+
3,
|
384 |
+
3
|
385 |
+
],
|
386 |
+
[
|
387 |
+
3,
|
388 |
+
3,
|
389 |
+
3
|
390 |
+
],
|
391 |
+
[
|
392 |
+
3,
|
393 |
+
3,
|
394 |
+
3
|
395 |
+
],
|
396 |
+
[
|
397 |
+
3,
|
398 |
+
3,
|
399 |
+
3
|
400 |
+
]
|
401 |
+
],
|
402 |
+
"unet_max_num_features": 320,
|
403 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
404 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
405 |
+
"resampling_fn_data_kwargs": {
|
406 |
+
"is_seg": false,
|
407 |
+
"order": 3,
|
408 |
+
"order_z": 0,
|
409 |
+
"force_separate_z": null
|
410 |
+
},
|
411 |
+
"resampling_fn_seg_kwargs": {
|
412 |
+
"is_seg": true,
|
413 |
+
"order": 1,
|
414 |
+
"order_z": 0,
|
415 |
+
"force_separate_z": null
|
416 |
+
},
|
417 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
418 |
+
"resampling_fn_probabilities_kwargs": {
|
419 |
+
"is_seg": false,
|
420 |
+
"order": 1,
|
421 |
+
"order_z": 0,
|
422 |
+
"force_separate_z": null
|
423 |
+
},
|
424 |
+
"batch_dice": true
|
425 |
+
},
|
426 |
+
"3d_cascade_fullres": {
|
427 |
+
"inherits_from": "3d_fullres",
|
428 |
+
"previous_stage": "3d_lowres"
|
429 |
+
}
|
430 |
+
},
|
431 |
+
"experiment_planner_used": "ExperimentPlanner",
|
432 |
+
"label_manager": "LabelManager",
|
433 |
+
"foreground_intensity_properties_per_channel": {
|
434 |
+
"0": {
|
435 |
+
"max": 44594.0,
|
436 |
+
"mean": 174.82106003593222,
|
437 |
+
"median": 52.0,
|
438 |
+
"min": -49831.0,
|
439 |
+
"percentile_00_5": -197.0,
|
440 |
+
"percentile_99_5": 1729.0,
|
441 |
+
"std": 362.496044938386
|
442 |
+
}
|
443 |
+
}
|
444 |
+
}
|
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Segmentation of X",
|
3 |
+
"description": "Segmentation",
|
4 |
+
"reference": "Jakob",
|
5 |
+
"licence": "-",
|
6 |
+
"release": "0.0",
|
7 |
+
"channel_names": {
|
8 |
+
"0": "CT"
|
9 |
+
},
|
10 |
+
"labels": {
|
11 |
+
"background": 0,
|
12 |
+
"rib_left_1": 1,
|
13 |
+
"rib_left_2": 2,
|
14 |
+
"rib_left_3": 3,
|
15 |
+
"rib_left_4": 4,
|
16 |
+
"rib_left_5": 5,
|
17 |
+
"rib_left_6": 6,
|
18 |
+
"rib_left_7": 7,
|
19 |
+
"rib_left_8": 8,
|
20 |
+
"rib_left_9": 9,
|
21 |
+
"rib_left_10": 10,
|
22 |
+
"rib_left_11": 11,
|
23 |
+
"rib_left_12": 12,
|
24 |
+
"rib_right_1": 13,
|
25 |
+
"rib_right_2": 14,
|
26 |
+
"rib_right_3": 15,
|
27 |
+
"rib_right_4": 16,
|
28 |
+
"rib_right_5": 17,
|
29 |
+
"rib_right_6": 18,
|
30 |
+
"rib_right_7": 19,
|
31 |
+
"rib_right_8": 20,
|
32 |
+
"rib_right_9": 21,
|
33 |
+
"rib_right_10": 22,
|
34 |
+
"rib_right_11": 23,
|
35 |
+
"rib_right_12": 24,
|
36 |
+
"sternum": 25,
|
37 |
+
"costal_cartilages": 26
|
38 |
+
},
|
39 |
+
"numTraining": 1559,
|
40 |
+
"file_ending": ".nii.gz",
|
41 |
+
"overwrite_image_reader_writer": "NibabelIOWithReorient"
|
42 |
+
}
|
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a674364c60b304fbd56feccdd95f8d0fe0c45a5bfa1ef25815516e4dde04d3fc
|
3 |
+
size 251846011
|
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8700,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7efb2425f4f0>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7efb2425f400>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7efb2425f790>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7efb2425f490>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'rib_left_1': 1, 'rib_left_2': 2, 'rib_left_3': 3, 'rib_left_4': 4, 'rib_left_5': 5, 'rib_left_6': 6, 'rib_left_7': 7, 'rib_left_8': 8, 'rib_left_9': 9, 'rib_left_10': 10, 'rib_left_11': 11, 'rib_left_12': 12, 'rib_right_1': 13, 'rib_right_2': 14, 'rib_right_3': 15, 'rib_right_4': 16, 'rib_right_5': 17, 'rib_right_6': 18, 'rib_right_7': 19, 'rib_right_8': 20, 'rib_right_9': 21, 'rib_right_10': 22, 'rib_right_11': 23, 'rib_right_12': 24, 'sternum': 25, 'costal_cartilages': 26}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7efb2b960dc0>",
|
23 |
+
"hostname": "rndapollolp01.uhbs.ch",
|
24 |
+
"inference_allowed_mirroring_axes": "None",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7efb2b960d60>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/mnt/nor/nnunet/results_v2/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_14_05_58_11.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7efb2b9606a0>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7efb2b8ac2b0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset295_TotalSegmentator_part5_ribs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 21501.0, 'mean': 291.98966240726804, 'median': 220.0, 'min': -2437.0, 'percentile_00_5': -110.0, 'percentile_99_5': 1302.0, 'std': 261.53174290110513}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'rib_left_1': 1, 'rib_left_2': 2, 'rib_left_3': 3, 'rib_left_4': 4, 'rib_left_5': 5, 'rib_left_6': 6, 'rib_left_7': 7, 'rib_left_8': 8, 'rib_left_9': 9, 'rib_left_10': 10, 'rib_left_11': 11, 'rib_left_12': 12, 'rib_right_1': 13, 'rib_right_2': 14, 'rib_right_3': 15, 'rib_right_4': 16, 'rib_right_5': 17, 'rib_right_6': 18, 'rib_right_7': 19, 'rib_right_8': 20, 'rib_right_9': 21, 'rib_right_10': 22, 'rib_right_11': 23, 'rib_right_12': 24, 'sternum': 25, 'costal_cartilages': 26}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/mnt/nor/nnunet/results_v2/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
|
42 |
+
"output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset295_TotalSegmentator_part5_ribs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 21501.0, 'mean': 291.98966240726804, 'median': 220.0, 'min': -2437.0, 'percentile_00_5': -110.0, 'percentile_99_5': 1302.0, 'std': 261.53174290110513}}}",
|
45 |
+
"preprocessed_dataset_folder": "/dojo/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/dojo/Dataset295_TotalSegmentator_part5_ribs_1559subj",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.0",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset295_TotalSegmentator_part5_ribs_1559subj",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
1.5,
|
6 |
+
1.5,
|
7 |
+
1.5
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
227,
|
11 |
+
227,
|
12 |
+
240
|
13 |
+
],
|
14 |
+
"image_reader_writer": "NibabelIOWithReorient",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 46,
|
30 |
+
"patch_size": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
227.0,
|
36 |
+
239.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.5,
|
40 |
+
1.5
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"CTNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2,
|
57 |
+
2
|
58 |
+
],
|
59 |
+
"n_conv_per_stage_decoder": [
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"num_pool_per_axis": [
|
68 |
+
6,
|
69 |
+
6
|
70 |
+
],
|
71 |
+
"pool_op_kernel_sizes": [
|
72 |
+
[
|
73 |
+
1,
|
74 |
+
1
|
75 |
+
],
|
76 |
+
[
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
[
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
[
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
[
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
[
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
2
|
99 |
+
]
|
100 |
+
],
|
101 |
+
"conv_kernel_sizes": [
|
102 |
+
[
|
103 |
+
3,
|
104 |
+
3
|
105 |
+
],
|
106 |
+
[
|
107 |
+
3,
|
108 |
+
3
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3,
|
112 |
+
3
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3,
|
116 |
+
3
|
117 |
+
],
|
118 |
+
[
|
119 |
+
3,
|
120 |
+
3
|
121 |
+
],
|
122 |
+
[
|
123 |
+
3,
|
124 |
+
3
|
125 |
+
],
|
126 |
+
[
|
127 |
+
3,
|
128 |
+
3
|
129 |
+
]
|
130 |
+
],
|
131 |
+
"unet_max_num_features": 512,
|
132 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
133 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
134 |
+
"resampling_fn_data_kwargs": {
|
135 |
+
"is_seg": false,
|
136 |
+
"order": 3,
|
137 |
+
"order_z": 0,
|
138 |
+
"force_separate_z": null
|
139 |
+
},
|
140 |
+
"resampling_fn_seg_kwargs": {
|
141 |
+
"is_seg": true,
|
142 |
+
"order": 1,
|
143 |
+
"order_z": 0,
|
144 |
+
"force_separate_z": null
|
145 |
+
},
|
146 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
147 |
+
"resampling_fn_probabilities_kwargs": {
|
148 |
+
"is_seg": false,
|
149 |
+
"order": 1,
|
150 |
+
"order_z": 0,
|
151 |
+
"force_separate_z": null
|
152 |
+
},
|
153 |
+
"batch_dice": true
|
154 |
+
},
|
155 |
+
"3d_lowres": {
|
156 |
+
"data_identifier": "nnUNetPlans_3d_lowres",
|
157 |
+
"preprocessor_name": "DefaultPreprocessor",
|
158 |
+
"batch_size": 2,
|
159 |
+
"patch_size": [
|
160 |
+
128,
|
161 |
+
128,
|
162 |
+
128
|
163 |
+
],
|
164 |
+
"median_image_size_in_voxels": [
|
165 |
+
196,
|
166 |
+
196,
|
167 |
+
206
|
168 |
+
],
|
169 |
+
"spacing": [
|
170 |
+
1.7389111114500002,
|
171 |
+
1.7389111114500002,
|
172 |
+
1.7389111114500002
|
173 |
+
],
|
174 |
+
"normalization_schemes": [
|
175 |
+
"CTNormalization"
|
176 |
+
],
|
177 |
+
"use_mask_for_norm": [
|
178 |
+
false
|
179 |
+
],
|
180 |
+
"UNet_class_name": "PlainConvUNet",
|
181 |
+
"UNet_base_num_features": 32,
|
182 |
+
"n_conv_per_stage_encoder": [
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2,
|
186 |
+
2,
|
187 |
+
2,
|
188 |
+
2
|
189 |
+
],
|
190 |
+
"n_conv_per_stage_decoder": [
|
191 |
+
2,
|
192 |
+
2,
|
193 |
+
2,
|
194 |
+
2,
|
195 |
+
2
|
196 |
+
],
|
197 |
+
"num_pool_per_axis": [
|
198 |
+
5,
|
199 |
+
5,
|
200 |
+
5
|
201 |
+
],
|
202 |
+
"pool_op_kernel_sizes": [
|
203 |
+
[
|
204 |
+
1,
|
205 |
+
1,
|
206 |
+
1
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
],
|
223 |
+
[
|
224 |
+
2,
|
225 |
+
2,
|
226 |
+
2
|
227 |
+
],
|
228 |
+
[
|
229 |
+
2,
|
230 |
+
2,
|
231 |
+
2
|
232 |
+
]
|
233 |
+
],
|
234 |
+
"conv_kernel_sizes": [
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
],
|
255 |
+
[
|
256 |
+
3,
|
257 |
+
3,
|
258 |
+
3
|
259 |
+
],
|
260 |
+
[
|
261 |
+
3,
|
262 |
+
3,
|
263 |
+
3
|
264 |
+
]
|
265 |
+
],
|
266 |
+
"unet_max_num_features": 320,
|
267 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
268 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
269 |
+
"resampling_fn_data_kwargs": {
|
270 |
+
"is_seg": false,
|
271 |
+
"order": 3,
|
272 |
+
"order_z": 0,
|
273 |
+
"force_separate_z": null
|
274 |
+
},
|
275 |
+
"resampling_fn_seg_kwargs": {
|
276 |
+
"is_seg": true,
|
277 |
+
"order": 1,
|
278 |
+
"order_z": 0,
|
279 |
+
"force_separate_z": null
|
280 |
+
},
|
281 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
282 |
+
"resampling_fn_probabilities_kwargs": {
|
283 |
+
"is_seg": false,
|
284 |
+
"order": 1,
|
285 |
+
"order_z": 0,
|
286 |
+
"force_separate_z": null
|
287 |
+
},
|
288 |
+
"batch_dice": false,
|
289 |
+
"next_stage": "3d_cascade_fullres"
|
290 |
+
},
|
291 |
+
"3d_fullres": {
|
292 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
293 |
+
"preprocessor_name": "DefaultPreprocessor",
|
294 |
+
"batch_size": 2,
|
295 |
+
"patch_size": [
|
296 |
+
128,
|
297 |
+
128,
|
298 |
+
128
|
299 |
+
],
|
300 |
+
"median_image_size_in_voxels": [
|
301 |
+
227.0,
|
302 |
+
227.0,
|
303 |
+
239.0
|
304 |
+
],
|
305 |
+
"spacing": [
|
306 |
+
1.5,
|
307 |
+
1.5,
|
308 |
+
1.5
|
309 |
+
],
|
310 |
+
"normalization_schemes": [
|
311 |
+
"CTNormalization"
|
312 |
+
],
|
313 |
+
"use_mask_for_norm": [
|
314 |
+
false
|
315 |
+
],
|
316 |
+
"UNet_class_name": "PlainConvUNet",
|
317 |
+
"UNet_base_num_features": 32,
|
318 |
+
"n_conv_per_stage_encoder": [
|
319 |
+
2,
|
320 |
+
2,
|
321 |
+
2,
|
322 |
+
2,
|
323 |
+
2,
|
324 |
+
2
|
325 |
+
],
|
326 |
+
"n_conv_per_stage_decoder": [
|
327 |
+
2,
|
328 |
+
2,
|
329 |
+
2,
|
330 |
+
2,
|
331 |
+
2
|
332 |
+
],
|
333 |
+
"num_pool_per_axis": [
|
334 |
+
5,
|
335 |
+
5,
|
336 |
+
5
|
337 |
+
],
|
338 |
+
"pool_op_kernel_sizes": [
|
339 |
+
[
|
340 |
+
1,
|
341 |
+
1,
|
342 |
+
1
|
343 |
+
],
|
344 |
+
[
|
345 |
+
2,
|
346 |
+
2,
|
347 |
+
2
|
348 |
+
],
|
349 |
+
[
|
350 |
+
2,
|
351 |
+
2,
|
352 |
+
2
|
353 |
+
],
|
354 |
+
[
|
355 |
+
2,
|
356 |
+
2,
|
357 |
+
2
|
358 |
+
],
|
359 |
+
[
|
360 |
+
2,
|
361 |
+
2,
|
362 |
+
2
|
363 |
+
],
|
364 |
+
[
|
365 |
+
2,
|
366 |
+
2,
|
367 |
+
2
|
368 |
+
]
|
369 |
+
],
|
370 |
+
"conv_kernel_sizes": [
|
371 |
+
[
|
372 |
+
3,
|
373 |
+
3,
|
374 |
+
3
|
375 |
+
],
|
376 |
+
[
|
377 |
+
3,
|
378 |
+
3,
|
379 |
+
3
|
380 |
+
],
|
381 |
+
[
|
382 |
+
3,
|
383 |
+
3,
|
384 |
+
3
|
385 |
+
],
|
386 |
+
[
|
387 |
+
3,
|
388 |
+
3,
|
389 |
+
3
|
390 |
+
],
|
391 |
+
[
|
392 |
+
3,
|
393 |
+
3,
|
394 |
+
3
|
395 |
+
],
|
396 |
+
[
|
397 |
+
3,
|
398 |
+
3,
|
399 |
+
3
|
400 |
+
]
|
401 |
+
],
|
402 |
+
"unet_max_num_features": 320,
|
403 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
404 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
405 |
+
"resampling_fn_data_kwargs": {
|
406 |
+
"is_seg": false,
|
407 |
+
"order": 3,
|
408 |
+
"order_z": 0,
|
409 |
+
"force_separate_z": null
|
410 |
+
},
|
411 |
+
"resampling_fn_seg_kwargs": {
|
412 |
+
"is_seg": true,
|
413 |
+
"order": 1,
|
414 |
+
"order_z": 0,
|
415 |
+
"force_separate_z": null
|
416 |
+
},
|
417 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
418 |
+
"resampling_fn_probabilities_kwargs": {
|
419 |
+
"is_seg": false,
|
420 |
+
"order": 1,
|
421 |
+
"order_z": 0,
|
422 |
+
"force_separate_z": null
|
423 |
+
},
|
424 |
+
"batch_dice": true
|
425 |
+
},
|
426 |
+
"3d_cascade_fullres": {
|
427 |
+
"inherits_from": "3d_fullres",
|
428 |
+
"previous_stage": "3d_lowres"
|
429 |
+
}
|
430 |
+
},
|
431 |
+
"experiment_planner_used": "ExperimentPlanner",
|
432 |
+
"label_manager": "LabelManager",
|
433 |
+
"foreground_intensity_properties_per_channel": {
|
434 |
+
"0": {
|
435 |
+
"max": 21501.0,
|
436 |
+
"mean": 291.98966240726804,
|
437 |
+
"median": 220.0,
|
438 |
+
"min": -2437.0,
|
439 |
+
"percentile_00_5": -110.0,
|
440 |
+
"percentile_99_5": 1302.0,
|
441 |
+
"std": 261.53174290110513
|
442 |
+
}
|
443 |
+
}
|
444 |
+
}
|
__MACOSX/._Dataset291_TotalSegmentator_part1_organs_1559subj
ADDED
Binary file (544 Bytes). View file
|
|
__MACOSX/._Dataset292_TotalSegmentator_part2_vertebrae_1532subj
ADDED
Binary file (547 Bytes). View file
|
|
__MACOSX/._Dataset293_TotalSegmentator_part3_cardiac_1559subj
ADDED
Binary file (545 Bytes). View file
|
|
__MACOSX/._Dataset294_TotalSegmentator_part4_muscles_1559subj
ADDED
Binary file (545 Bytes). View file
|
|