devin-ai-integration[bot] commited on
Commit
2fbf6b1
·
1 Parent(s): a4bfcad

Add TotalSegmentator models

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. Dataset291_TotalSegmentator_part1_organs_1559subj/.DS_Store +0 -0
  3. Dataset291_TotalSegmentator_part1_organs_1559subj/._.DS_Store +0 -0
  4. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store +0 -0
  5. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store +0 -0
  6. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset.json +0 -0
  7. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset_fingerprint.json +0 -0
  8. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._plans.json +0 -0
  9. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +40 -0
  10. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
  11. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/.DS_Store +0 -0
  12. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._.DS_Store +0 -0
  13. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._debug.json +0 -0
  14. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._training_log_2023_5_13_11_18_49.txt +0 -0
  15. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
  16. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
  17. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
  18. Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
  19. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/.DS_Store +0 -0
  20. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/._.DS_Store +0 -0
  21. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store +0 -0
  22. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store +0 -0
  23. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +42 -0
  24. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
  25. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
  26. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
  27. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
  28. Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
  29. Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +34 -0
  30. Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
  31. Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
  32. Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
  33. Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
  34. Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
  35. Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +39 -0
  36. Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
  37. Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
  38. Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
  39. Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
  40. Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
  41. Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json +42 -0
  42. Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -0
  43. Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
  44. Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
  45. Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png +0 -0
  46. Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json +444 -0
  47. __MACOSX/._Dataset291_TotalSegmentator_part1_organs_1559subj +0 -0
  48. __MACOSX/._Dataset292_TotalSegmentator_part2_vertebrae_1532subj +0 -0
  49. __MACOSX/._Dataset293_TotalSegmentator_part3_cardiac_1559subj +0 -0
  50. __MACOSX/._Dataset294_TotalSegmentator_part4_muscles_1559subj +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.hdf5 filter=lfs diff=lfs merge=lfs -text
Dataset291_TotalSegmentator_part1_organs_1559subj/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/._.DS_Store ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset.json ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._dataset_fingerprint.json ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._plans.json ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Segmentation of X",
3
+ "description": "Segmentation",
4
+ "reference": "Jakob",
5
+ "licence": "-",
6
+ "release": "0.0",
7
+ "labels": {
8
+ "background": 0,
9
+ "spleen": 1,
10
+ "kidney_right": 2,
11
+ "kidney_left": 3,
12
+ "gallbladder": 4,
13
+ "liver": 5,
14
+ "stomach": 6,
15
+ "pancreas": 7,
16
+ "adrenal_gland_right": 8,
17
+ "adrenal_gland_left": 9,
18
+ "lung_upper_lobe_left": 10,
19
+ "lung_lower_lobe_left": 11,
20
+ "lung_upper_lobe_right": 12,
21
+ "lung_middle_lobe_right": 13,
22
+ "lung_lower_lobe_right": 14,
23
+ "esophagus": 15,
24
+ "trachea": 16,
25
+ "thyroid_gland": 17,
26
+ "small_bowel": 18,
27
+ "duodenum": 19,
28
+ "colon": 20,
29
+ "urinary_bladder": 21,
30
+ "prostate": 22,
31
+ "kidney_cyst_left": 23,
32
+ "kidney_cyst_right": 24
33
+ },
34
+ "numTraining": 1559,
35
+ "channel_names": {
36
+ "0": "CT"
37
+ },
38
+ "file_ending": ".nii.gz",
39
+ "overwrite_image_reader_writer": "NibabelIOWithReorient"
40
+ }
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._.DS_Store ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._debug.json ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/._training_log_2023_5_13_11_18_49.txt ADDED
Binary file (4.1 kB). View file
 
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98c429f89fd9b3b08890fbb2b4c08c365ad4655fdcadb45efaa29380129fd890
3
+ size 251697787
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8700,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd24452c340>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd24452c1c0>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd24452ce50>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd24452ce20>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'spleen': 1, 'kidney_right': 2, 'kidney_left': 3, 'gallbladder': 4, 'liver': 5, 'stomach': 6, 'pancreas': 7, 'adrenal_gland_right': 8, 'adrenal_gland_left': 9, 'lung_upper_lobe_left': 10, 'lung_lower_lobe_left': 11, 'lung_upper_lobe_right': 12, 'lung_middle_lobe_right': 13, 'lung_lower_lobe_right': 14, 'esophagus': 15, 'trachea': 16, 'thyroid_gland': 17, 'small_bowel': 18, 'duodenum': 19, 'colon': 20, 'urinary_bladder': 21, 'prostate': 22, 'kidney_cyst_left': 23, 'kidney_cyst_right': 24}, 'numTraining': 1559, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fd255327e20>",
23
+ "hostname": "rndapollolp01.uhbs.ch",
24
+ "inference_allowed_mirroring_axes": "None",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fd255327ee0>",
29
+ "local_rank": "0",
30
+ "log_file": "/mnt/nor/nnunet/results_v2/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_5_13_11_18_49.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fd255327d90>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fd341069310>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset291_TotalSegmentator_part1_organs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3606.0, 'mean': -370.00039267657144, 'median': -249.0, 'min': -3139.0, 'percentile_00_5': -1024.0, 'percentile_99_5': 276.0, 'std': 436.5998675471528}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'spleen': 1, 'kidney_right': 2, 'kidney_left': 3, 'gallbladder': 4, 'liver': 5, 'stomach': 6, 'pancreas': 7, 'adrenal_gland_right': 8, 'adrenal_gland_left': 9, 'lung_upper_lobe_left': 10, 'lung_lower_lobe_left': 11, 'lung_upper_lobe_right': 12, 'lung_middle_lobe_right': 13, 'lung_lower_lobe_right': 14, 'esophagus': 15, 'trachea': 16, 'thyroid_gland': 17, 'small_bowel': 18, 'duodenum': 19, 'colon': 20, 'urinary_bladder': 21, 'prostate': 22, 'kidney_cyst_left': 23, 'kidney_cyst_right': 24}, 'numTraining': 1559, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/mnt/nor/nnunet/results_v2/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
42
+ "output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset291_TotalSegmentator_part1_organs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3606.0, 'mean': -370.00039267657144, 'median': -249.0, 'min': -3139.0, 'percentile_00_5': -1024.0, 'percentile_99_5': 276.0, 'std': 436.5998675471528}}}",
45
+ "preprocessed_dataset_folder": "/dojo/Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/dojo/Dataset291_TotalSegmentator_part1_organs_1559subj",
47
+ "save_every": "50",
48
+ "torch_version": "2.0.0",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png ADDED
Dataset291_TotalSegmentator_part1_organs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset291_TotalSegmentator_part1_organs_1559subj",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 1.5,
6
+ 1.5,
7
+ 1.5
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 227,
11
+ 227,
12
+ 240
13
+ ],
14
+ "image_reader_writer": "NibabelIOWithReorient",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 46,
30
+ "patch_size": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 227.0,
36
+ 239.0
37
+ ],
38
+ "spacing": [
39
+ 1.5,
40
+ 1.5
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "UNet_class_name": "PlainConvUNet",
49
+ "UNet_base_num_features": 32,
50
+ "n_conv_per_stage_encoder": [
51
+ 2,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 2,
56
+ 2,
57
+ 2
58
+ ],
59
+ "n_conv_per_stage_decoder": [
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 2,
65
+ 2
66
+ ],
67
+ "num_pool_per_axis": [
68
+ 6,
69
+ 6
70
+ ],
71
+ "pool_op_kernel_sizes": [
72
+ [
73
+ 1,
74
+ 1
75
+ ],
76
+ [
77
+ 2,
78
+ 2
79
+ ],
80
+ [
81
+ 2,
82
+ 2
83
+ ],
84
+ [
85
+ 2,
86
+ 2
87
+ ],
88
+ [
89
+ 2,
90
+ 2
91
+ ],
92
+ [
93
+ 2,
94
+ 2
95
+ ],
96
+ [
97
+ 2,
98
+ 2
99
+ ]
100
+ ],
101
+ "conv_kernel_sizes": [
102
+ [
103
+ 3,
104
+ 3
105
+ ],
106
+ [
107
+ 3,
108
+ 3
109
+ ],
110
+ [
111
+ 3,
112
+ 3
113
+ ],
114
+ [
115
+ 3,
116
+ 3
117
+ ],
118
+ [
119
+ 3,
120
+ 3
121
+ ],
122
+ [
123
+ 3,
124
+ 3
125
+ ],
126
+ [
127
+ 3,
128
+ 3
129
+ ]
130
+ ],
131
+ "unet_max_num_features": 512,
132
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
133
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
134
+ "resampling_fn_data_kwargs": {
135
+ "is_seg": false,
136
+ "order": 3,
137
+ "order_z": 0,
138
+ "force_separate_z": null
139
+ },
140
+ "resampling_fn_seg_kwargs": {
141
+ "is_seg": true,
142
+ "order": 1,
143
+ "order_z": 0,
144
+ "force_separate_z": null
145
+ },
146
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
147
+ "resampling_fn_probabilities_kwargs": {
148
+ "is_seg": false,
149
+ "order": 1,
150
+ "order_z": 0,
151
+ "force_separate_z": null
152
+ },
153
+ "batch_dice": true
154
+ },
155
+ "3d_lowres": {
156
+ "data_identifier": "nnUNetPlans_3d_lowres",
157
+ "preprocessor_name": "DefaultPreprocessor",
158
+ "batch_size": 2,
159
+ "patch_size": [
160
+ 128,
161
+ 128,
162
+ 128
163
+ ],
164
+ "median_image_size_in_voxels": [
165
+ 196,
166
+ 196,
167
+ 206
168
+ ],
169
+ "spacing": [
170
+ 1.7389111114500002,
171
+ 1.7389111114500002,
172
+ 1.7389111114500002
173
+ ],
174
+ "normalization_schemes": [
175
+ "CTNormalization"
176
+ ],
177
+ "use_mask_for_norm": [
178
+ false
179
+ ],
180
+ "UNet_class_name": "PlainConvUNet",
181
+ "UNet_base_num_features": 32,
182
+ "n_conv_per_stage_encoder": [
183
+ 2,
184
+ 2,
185
+ 2,
186
+ 2,
187
+ 2,
188
+ 2
189
+ ],
190
+ "n_conv_per_stage_decoder": [
191
+ 2,
192
+ 2,
193
+ 2,
194
+ 2,
195
+ 2
196
+ ],
197
+ "num_pool_per_axis": [
198
+ 5,
199
+ 5,
200
+ 5
201
+ ],
202
+ "pool_op_kernel_sizes": [
203
+ [
204
+ 1,
205
+ 1,
206
+ 1
207
+ ],
208
+ [
209
+ 2,
210
+ 2,
211
+ 2
212
+ ],
213
+ [
214
+ 2,
215
+ 2,
216
+ 2
217
+ ],
218
+ [
219
+ 2,
220
+ 2,
221
+ 2
222
+ ],
223
+ [
224
+ 2,
225
+ 2,
226
+ 2
227
+ ],
228
+ [
229
+ 2,
230
+ 2,
231
+ 2
232
+ ]
233
+ ],
234
+ "conv_kernel_sizes": [
235
+ [
236
+ 3,
237
+ 3,
238
+ 3
239
+ ],
240
+ [
241
+ 3,
242
+ 3,
243
+ 3
244
+ ],
245
+ [
246
+ 3,
247
+ 3,
248
+ 3
249
+ ],
250
+ [
251
+ 3,
252
+ 3,
253
+ 3
254
+ ],
255
+ [
256
+ 3,
257
+ 3,
258
+ 3
259
+ ],
260
+ [
261
+ 3,
262
+ 3,
263
+ 3
264
+ ]
265
+ ],
266
+ "unet_max_num_features": 320,
267
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
268
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
269
+ "resampling_fn_data_kwargs": {
270
+ "is_seg": false,
271
+ "order": 3,
272
+ "order_z": 0,
273
+ "force_separate_z": null
274
+ },
275
+ "resampling_fn_seg_kwargs": {
276
+ "is_seg": true,
277
+ "order": 1,
278
+ "order_z": 0,
279
+ "force_separate_z": null
280
+ },
281
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
282
+ "resampling_fn_probabilities_kwargs": {
283
+ "is_seg": false,
284
+ "order": 1,
285
+ "order_z": 0,
286
+ "force_separate_z": null
287
+ },
288
+ "batch_dice": false,
289
+ "next_stage": "3d_cascade_fullres"
290
+ },
291
+ "3d_fullres": {
292
+ "data_identifier": "nnUNetPlans_3d_fullres",
293
+ "preprocessor_name": "DefaultPreprocessor",
294
+ "batch_size": 2,
295
+ "patch_size": [
296
+ 128,
297
+ 128,
298
+ 128
299
+ ],
300
+ "median_image_size_in_voxels": [
301
+ 227.0,
302
+ 227.0,
303
+ 239.0
304
+ ],
305
+ "spacing": [
306
+ 1.5,
307
+ 1.5,
308
+ 1.5
309
+ ],
310
+ "normalization_schemes": [
311
+ "CTNormalization"
312
+ ],
313
+ "use_mask_for_norm": [
314
+ false
315
+ ],
316
+ "UNet_class_name": "PlainConvUNet",
317
+ "UNet_base_num_features": 32,
318
+ "n_conv_per_stage_encoder": [
319
+ 2,
320
+ 2,
321
+ 2,
322
+ 2,
323
+ 2,
324
+ 2
325
+ ],
326
+ "n_conv_per_stage_decoder": [
327
+ 2,
328
+ 2,
329
+ 2,
330
+ 2,
331
+ 2
332
+ ],
333
+ "num_pool_per_axis": [
334
+ 5,
335
+ 5,
336
+ 5
337
+ ],
338
+ "pool_op_kernel_sizes": [
339
+ [
340
+ 1,
341
+ 1,
342
+ 1
343
+ ],
344
+ [
345
+ 2,
346
+ 2,
347
+ 2
348
+ ],
349
+ [
350
+ 2,
351
+ 2,
352
+ 2
353
+ ],
354
+ [
355
+ 2,
356
+ 2,
357
+ 2
358
+ ],
359
+ [
360
+ 2,
361
+ 2,
362
+ 2
363
+ ],
364
+ [
365
+ 2,
366
+ 2,
367
+ 2
368
+ ]
369
+ ],
370
+ "conv_kernel_sizes": [
371
+ [
372
+ 3,
373
+ 3,
374
+ 3
375
+ ],
376
+ [
377
+ 3,
378
+ 3,
379
+ 3
380
+ ],
381
+ [
382
+ 3,
383
+ 3,
384
+ 3
385
+ ],
386
+ [
387
+ 3,
388
+ 3,
389
+ 3
390
+ ],
391
+ [
392
+ 3,
393
+ 3,
394
+ 3
395
+ ],
396
+ [
397
+ 3,
398
+ 3,
399
+ 3
400
+ ]
401
+ ],
402
+ "unet_max_num_features": 320,
403
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
404
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
405
+ "resampling_fn_data_kwargs": {
406
+ "is_seg": false,
407
+ "order": 3,
408
+ "order_z": 0,
409
+ "force_separate_z": null
410
+ },
411
+ "resampling_fn_seg_kwargs": {
412
+ "is_seg": true,
413
+ "order": 1,
414
+ "order_z": 0,
415
+ "force_separate_z": null
416
+ },
417
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
418
+ "resampling_fn_probabilities_kwargs": {
419
+ "is_seg": false,
420
+ "order": 1,
421
+ "order_z": 0,
422
+ "force_separate_z": null
423
+ },
424
+ "batch_dice": true
425
+ },
426
+ "3d_cascade_fullres": {
427
+ "inherits_from": "3d_fullres",
428
+ "previous_stage": "3d_lowres"
429
+ }
430
+ },
431
+ "experiment_planner_used": "ExperimentPlanner",
432
+ "label_manager": "LabelManager",
433
+ "foreground_intensity_properties_per_channel": {
434
+ "0": {
435
+ "max": 3606.0,
436
+ "mean": -370.00039267657144,
437
+ "median": -249.0,
438
+ "min": -3139.0,
439
+ "percentile_00_5": -1024.0,
440
+ "percentile_99_5": 276.0,
441
+ "std": 436.5998675471528
442
+ }
443
+ }
444
+ }
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/._.DS_Store ADDED
Binary file (4.1 kB). View file
 
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/.DS_Store ADDED
Binary file (6.15 kB). View file
 
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/._.DS_Store ADDED
Binary file (4.1 kB). View file
 
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Segmentation of X",
3
+ "description": "Segmentation",
4
+ "reference": "Jakob",
5
+ "licence": "-",
6
+ "release": "0.0",
7
+ "labels": {
8
+ "background": 0,
9
+ "sacrum": 1,
10
+ "vertebrae_S1": 2,
11
+ "vertebrae_L5": 3,
12
+ "vertebrae_L4": 4,
13
+ "vertebrae_L3": 5,
14
+ "vertebrae_L2": 6,
15
+ "vertebrae_L1": 7,
16
+ "vertebrae_T12": 8,
17
+ "vertebrae_T11": 9,
18
+ "vertebrae_T10": 10,
19
+ "vertebrae_T9": 11,
20
+ "vertebrae_T8": 12,
21
+ "vertebrae_T7": 13,
22
+ "vertebrae_T6": 14,
23
+ "vertebrae_T5": 15,
24
+ "vertebrae_T4": 16,
25
+ "vertebrae_T3": 17,
26
+ "vertebrae_T2": 18,
27
+ "vertebrae_T1": 19,
28
+ "vertebrae_C7": 20,
29
+ "vertebrae_C6": 21,
30
+ "vertebrae_C5": 22,
31
+ "vertebrae_C4": 23,
32
+ "vertebrae_C3": 24,
33
+ "vertebrae_C2": 25,
34
+ "vertebrae_C1": 26
35
+ },
36
+ "numTraining": 1532,
37
+ "channel_names": {
38
+ "0": "CT"
39
+ },
40
+ "file_ending": ".nii.gz",
41
+ "overwrite_image_reader_writer": "NibabelIOWithReorient"
42
+ }
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7022f71829ef00aa14d790a7667bc18eb1691f2fe5b0a38c475862abc84c2457
3
+ size 251848251
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [225.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8700,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f0fa01ff190>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f0fa01ff0d0>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f0fa01ffd60>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f0fa01ffcd0>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'sacrum': 1, 'vertebrae_S1': 2, 'vertebrae_L5': 3, 'vertebrae_L4': 4, 'vertebrae_L3': 5, 'vertebrae_L2': 6, 'vertebrae_L1': 7, 'vertebrae_T12': 8, 'vertebrae_T11': 9, 'vertebrae_T10': 10, 'vertebrae_T9': 11, 'vertebrae_T8': 12, 'vertebrae_T7': 13, 'vertebrae_T6': 14, 'vertebrae_T5': 15, 'vertebrae_T4': 16, 'vertebrae_T3': 17, 'vertebrae_T2': 18, 'vertebrae_T1': 19, 'vertebrae_C7': 20, 'vertebrae_C6': 21, 'vertebrae_C5': 22, 'vertebrae_C4': 23, 'vertebrae_C3': 24, 'vertebrae_C2': 25, 'vertebrae_C1': 26}, 'numTraining': 1532, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f0fa98b76a0>",
23
+ "hostname": "rndapollolp01.uhbs.ch",
24
+ "inference_allowed_mirroring_axes": "None",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f0fa98b7640>",
29
+ "local_rank": "0",
30
+ "log_file": "/mnt/nor/nnunet/results_v2/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_6_28_11_19_44.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f0fa98b78b0>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f0fa9a65f40>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset292_TotalSegmentator_part2_vertebrae_1532subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [225, 227, 239], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [194, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [225.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 36911.0, 'mean': 367.32929817099546, 'median': 283.0, 'min': -34461.0, 'percentile_00_5': -96.0, 'percentile_99_5': 1514.0, 'std': 320.8587389393513}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'labels': {'background': 0, 'sacrum': 1, 'vertebrae_S1': 2, 'vertebrae_L5': 3, 'vertebrae_L4': 4, 'vertebrae_L3': 5, 'vertebrae_L2': 6, 'vertebrae_L1': 7, 'vertebrae_T12': 8, 'vertebrae_T11': 9, 'vertebrae_T10': 10, 'vertebrae_T9': 11, 'vertebrae_T8': 12, 'vertebrae_T7': 13, 'vertebrae_T6': 14, 'vertebrae_T5': 15, 'vertebrae_T4': 16, 'vertebrae_T3': 17, 'vertebrae_T2': 18, 'vertebrae_T1': 19, 'vertebrae_C7': 20, 'vertebrae_C6': 21, 'vertebrae_C5': 22, 'vertebrae_C4': 23, 'vertebrae_C3': 24, 'vertebrae_C2': 25, 'vertebrae_C1': 26}, 'numTraining': 1532, 'channel_names': {'0': 'CT'}, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/mnt/nor/nnunet/results_v2/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
42
+ "output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset292_TotalSegmentator_part2_vertebrae_1532subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [225, 227, 239], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [194, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [225.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 36911.0, 'mean': 367.32929817099546, 'median': 283.0, 'min': -34461.0, 'percentile_00_5': -96.0, 'percentile_99_5': 1514.0, 'std': 320.8587389393513}}}",
45
+ "preprocessed_dataset_folder": "/dojo/Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/dojo/Dataset292_TotalSegmentator_part2_vertebrae_1532subj",
47
+ "save_every": "50",
48
+ "torch_version": "2.0.0",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png ADDED
Dataset292_TotalSegmentator_part2_vertebrae_1532subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset292_TotalSegmentator_part2_vertebrae_1532subj",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 1.5,
6
+ 1.5,
7
+ 1.5
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 225,
11
+ 227,
12
+ 239
13
+ ],
14
+ "image_reader_writer": "NibabelIOWithReorient",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 46,
30
+ "patch_size": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 227.0,
36
+ 239.0
37
+ ],
38
+ "spacing": [
39
+ 1.5,
40
+ 1.5
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "UNet_class_name": "PlainConvUNet",
49
+ "UNet_base_num_features": 32,
50
+ "n_conv_per_stage_encoder": [
51
+ 2,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 2,
56
+ 2,
57
+ 2
58
+ ],
59
+ "n_conv_per_stage_decoder": [
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 2,
65
+ 2
66
+ ],
67
+ "num_pool_per_axis": [
68
+ 6,
69
+ 6
70
+ ],
71
+ "pool_op_kernel_sizes": [
72
+ [
73
+ 1,
74
+ 1
75
+ ],
76
+ [
77
+ 2,
78
+ 2
79
+ ],
80
+ [
81
+ 2,
82
+ 2
83
+ ],
84
+ [
85
+ 2,
86
+ 2
87
+ ],
88
+ [
89
+ 2,
90
+ 2
91
+ ],
92
+ [
93
+ 2,
94
+ 2
95
+ ],
96
+ [
97
+ 2,
98
+ 2
99
+ ]
100
+ ],
101
+ "conv_kernel_sizes": [
102
+ [
103
+ 3,
104
+ 3
105
+ ],
106
+ [
107
+ 3,
108
+ 3
109
+ ],
110
+ [
111
+ 3,
112
+ 3
113
+ ],
114
+ [
115
+ 3,
116
+ 3
117
+ ],
118
+ [
119
+ 3,
120
+ 3
121
+ ],
122
+ [
123
+ 3,
124
+ 3
125
+ ],
126
+ [
127
+ 3,
128
+ 3
129
+ ]
130
+ ],
131
+ "unet_max_num_features": 512,
132
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
133
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
134
+ "resampling_fn_data_kwargs": {
135
+ "is_seg": false,
136
+ "order": 3,
137
+ "order_z": 0,
138
+ "force_separate_z": null
139
+ },
140
+ "resampling_fn_seg_kwargs": {
141
+ "is_seg": true,
142
+ "order": 1,
143
+ "order_z": 0,
144
+ "force_separate_z": null
145
+ },
146
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
147
+ "resampling_fn_probabilities_kwargs": {
148
+ "is_seg": false,
149
+ "order": 1,
150
+ "order_z": 0,
151
+ "force_separate_z": null
152
+ },
153
+ "batch_dice": true
154
+ },
155
+ "3d_lowres": {
156
+ "data_identifier": "nnUNetPlans_3d_lowres",
157
+ "preprocessor_name": "DefaultPreprocessor",
158
+ "batch_size": 2,
159
+ "patch_size": [
160
+ 128,
161
+ 128,
162
+ 128
163
+ ],
164
+ "median_image_size_in_voxels": [
165
+ 194,
166
+ 196,
167
+ 206
168
+ ],
169
+ "spacing": [
170
+ 1.7389111114500002,
171
+ 1.7389111114500002,
172
+ 1.7389111114500002
173
+ ],
174
+ "normalization_schemes": [
175
+ "CTNormalization"
176
+ ],
177
+ "use_mask_for_norm": [
178
+ false
179
+ ],
180
+ "UNet_class_name": "PlainConvUNet",
181
+ "UNet_base_num_features": 32,
182
+ "n_conv_per_stage_encoder": [
183
+ 2,
184
+ 2,
185
+ 2,
186
+ 2,
187
+ 2,
188
+ 2
189
+ ],
190
+ "n_conv_per_stage_decoder": [
191
+ 2,
192
+ 2,
193
+ 2,
194
+ 2,
195
+ 2
196
+ ],
197
+ "num_pool_per_axis": [
198
+ 5,
199
+ 5,
200
+ 5
201
+ ],
202
+ "pool_op_kernel_sizes": [
203
+ [
204
+ 1,
205
+ 1,
206
+ 1
207
+ ],
208
+ [
209
+ 2,
210
+ 2,
211
+ 2
212
+ ],
213
+ [
214
+ 2,
215
+ 2,
216
+ 2
217
+ ],
218
+ [
219
+ 2,
220
+ 2,
221
+ 2
222
+ ],
223
+ [
224
+ 2,
225
+ 2,
226
+ 2
227
+ ],
228
+ [
229
+ 2,
230
+ 2,
231
+ 2
232
+ ]
233
+ ],
234
+ "conv_kernel_sizes": [
235
+ [
236
+ 3,
237
+ 3,
238
+ 3
239
+ ],
240
+ [
241
+ 3,
242
+ 3,
243
+ 3
244
+ ],
245
+ [
246
+ 3,
247
+ 3,
248
+ 3
249
+ ],
250
+ [
251
+ 3,
252
+ 3,
253
+ 3
254
+ ],
255
+ [
256
+ 3,
257
+ 3,
258
+ 3
259
+ ],
260
+ [
261
+ 3,
262
+ 3,
263
+ 3
264
+ ]
265
+ ],
266
+ "unet_max_num_features": 320,
267
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
268
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
269
+ "resampling_fn_data_kwargs": {
270
+ "is_seg": false,
271
+ "order": 3,
272
+ "order_z": 0,
273
+ "force_separate_z": null
274
+ },
275
+ "resampling_fn_seg_kwargs": {
276
+ "is_seg": true,
277
+ "order": 1,
278
+ "order_z": 0,
279
+ "force_separate_z": null
280
+ },
281
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
282
+ "resampling_fn_probabilities_kwargs": {
283
+ "is_seg": false,
284
+ "order": 1,
285
+ "order_z": 0,
286
+ "force_separate_z": null
287
+ },
288
+ "batch_dice": false,
289
+ "next_stage": "3d_cascade_fullres"
290
+ },
291
+ "3d_fullres": {
292
+ "data_identifier": "nnUNetPlans_3d_fullres",
293
+ "preprocessor_name": "DefaultPreprocessor",
294
+ "batch_size": 2,
295
+ "patch_size": [
296
+ 128,
297
+ 128,
298
+ 128
299
+ ],
300
+ "median_image_size_in_voxels": [
301
+ 225.0,
302
+ 227.0,
303
+ 239.0
304
+ ],
305
+ "spacing": [
306
+ 1.5,
307
+ 1.5,
308
+ 1.5
309
+ ],
310
+ "normalization_schemes": [
311
+ "CTNormalization"
312
+ ],
313
+ "use_mask_for_norm": [
314
+ false
315
+ ],
316
+ "UNet_class_name": "PlainConvUNet",
317
+ "UNet_base_num_features": 32,
318
+ "n_conv_per_stage_encoder": [
319
+ 2,
320
+ 2,
321
+ 2,
322
+ 2,
323
+ 2,
324
+ 2
325
+ ],
326
+ "n_conv_per_stage_decoder": [
327
+ 2,
328
+ 2,
329
+ 2,
330
+ 2,
331
+ 2
332
+ ],
333
+ "num_pool_per_axis": [
334
+ 5,
335
+ 5,
336
+ 5
337
+ ],
338
+ "pool_op_kernel_sizes": [
339
+ [
340
+ 1,
341
+ 1,
342
+ 1
343
+ ],
344
+ [
345
+ 2,
346
+ 2,
347
+ 2
348
+ ],
349
+ [
350
+ 2,
351
+ 2,
352
+ 2
353
+ ],
354
+ [
355
+ 2,
356
+ 2,
357
+ 2
358
+ ],
359
+ [
360
+ 2,
361
+ 2,
362
+ 2
363
+ ],
364
+ [
365
+ 2,
366
+ 2,
367
+ 2
368
+ ]
369
+ ],
370
+ "conv_kernel_sizes": [
371
+ [
372
+ 3,
373
+ 3,
374
+ 3
375
+ ],
376
+ [
377
+ 3,
378
+ 3,
379
+ 3
380
+ ],
381
+ [
382
+ 3,
383
+ 3,
384
+ 3
385
+ ],
386
+ [
387
+ 3,
388
+ 3,
389
+ 3
390
+ ],
391
+ [
392
+ 3,
393
+ 3,
394
+ 3
395
+ ],
396
+ [
397
+ 3,
398
+ 3,
399
+ 3
400
+ ]
401
+ ],
402
+ "unet_max_num_features": 320,
403
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
404
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
405
+ "resampling_fn_data_kwargs": {
406
+ "is_seg": false,
407
+ "order": 3,
408
+ "order_z": 0,
409
+ "force_separate_z": null
410
+ },
411
+ "resampling_fn_seg_kwargs": {
412
+ "is_seg": true,
413
+ "order": 1,
414
+ "order_z": 0,
415
+ "force_separate_z": null
416
+ },
417
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
418
+ "resampling_fn_probabilities_kwargs": {
419
+ "is_seg": false,
420
+ "order": 1,
421
+ "order_z": 0,
422
+ "force_separate_z": null
423
+ },
424
+ "batch_dice": true
425
+ },
426
+ "3d_cascade_fullres": {
427
+ "inherits_from": "3d_fullres",
428
+ "previous_stage": "3d_lowres"
429
+ }
430
+ },
431
+ "experiment_planner_used": "ExperimentPlanner",
432
+ "label_manager": "LabelManager",
433
+ "foreground_intensity_properties_per_channel": {
434
+ "0": {
435
+ "max": 36911.0,
436
+ "mean": 367.32929817099546,
437
+ "median": 283.0,
438
+ "min": -34461.0,
439
+ "percentile_00_5": -96.0,
440
+ "percentile_99_5": 1514.0,
441
+ "std": 320.8587389393513
442
+ }
443
+ }
444
+ }
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Segmentation of X",
3
+ "description": "Segmentation",
4
+ "reference": "Jakob",
5
+ "licence": "-",
6
+ "release": "0.0",
7
+ "channel_names": {
8
+ "0": "CT"
9
+ },
10
+ "labels": {
11
+ "background": 0,
12
+ "heart": 1,
13
+ "aorta": 2,
14
+ "pulmonary_vein": 3,
15
+ "brachiocephalic_trunk": 4,
16
+ "subclavian_artery_right": 5,
17
+ "subclavian_artery_left": 6,
18
+ "common_carotid_artery_right": 7,
19
+ "common_carotid_artery_left": 8,
20
+ "brachiocephalic_vein_left": 9,
21
+ "brachiocephalic_vein_right": 10,
22
+ "atrial_appendage_left": 11,
23
+ "superior_vena_cava": 12,
24
+ "inferior_vena_cava": 13,
25
+ "portal_vein_and_splenic_vein": 14,
26
+ "iliac_artery_left": 15,
27
+ "iliac_artery_right": 16,
28
+ "iliac_vena_left": 17,
29
+ "iliac_vena_right": 18
30
+ },
31
+ "numTraining": 1559,
32
+ "file_ending": ".nii.gz",
33
+ "overwrite_image_reader_writer": "NibabelIOWithReorient"
34
+ }
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:189010ac67fec3f1704df7547306d0067eabaaf620e0a46a1bdd183afa0800e4
3
+ size 251268859
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8700,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f6f27071eb0>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f6f270710a0>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f6f27071760>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f6f270716d0>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'heart': 1, 'aorta': 2, 'pulmonary_vein': 3, 'brachiocephalic_trunk': 4, 'subclavian_artery_right': 5, 'subclavian_artery_left': 6, 'common_carotid_artery_right': 7, 'common_carotid_artery_left': 8, 'brachiocephalic_vein_left': 9, 'brachiocephalic_vein_right': 10, 'atrial_appendage_left': 11, 'superior_vena_cava': 12, 'inferior_vena_cava': 13, 'portal_vein_and_splenic_vein': 14, 'iliac_artery_left': 15, 'iliac_artery_right': 16, 'iliac_vena_left': 17, 'iliac_vena_right': 18}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f6f37e7eca0>",
23
+ "hostname": "rndapollolp01.uhbs.ch",
24
+ "inference_allowed_mirroring_axes": "None",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f6f37e7ed90>",
29
+ "local_rank": "0",
30
+ "log_file": "/mnt/nor/nnunet/results_v2/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_8_11_15_45.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f6f37e7ef40>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f6f37e7edf0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset293_TotalSegmentator_part3_cardiac_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 47, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 6666.0, 'mean': 142.1977119916391, 'median': 108.0, 'min': -1551.0, 'percentile_00_5': -101.0, 'percentile_99_5': 813.0, 'std': 154.74032651622053}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'heart': 1, 'aorta': 2, 'pulmonary_vein': 3, 'brachiocephalic_trunk': 4, 'subclavian_artery_right': 5, 'subclavian_artery_left': 6, 'common_carotid_artery_right': 7, 'common_carotid_artery_left': 8, 'brachiocephalic_vein_left': 9, 'brachiocephalic_vein_right': 10, 'atrial_appendage_left': 11, 'superior_vena_cava': 12, 'inferior_vena_cava': 13, 'portal_vein_and_splenic_vein': 14, 'iliac_artery_left': 15, 'iliac_artery_right': 16, 'iliac_vena_left': 17, 'iliac_vena_right': 18}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/mnt/nor/nnunet/results_v2/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
42
+ "output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset293_TotalSegmentator_part3_cardiac_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 47, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 6666.0, 'mean': 142.1977119916391, 'median': 108.0, 'min': -1551.0, 'percentile_00_5': -101.0, 'percentile_99_5': 813.0, 'std': 154.74032651622053}}}",
45
+ "preprocessed_dataset_folder": "/dojo/Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/dojo/Dataset293_TotalSegmentator_part3_cardiac_1559subj",
47
+ "save_every": "50",
48
+ "torch_version": "2.0.0",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png ADDED
Dataset293_TotalSegmentator_part3_cardiac_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset293_TotalSegmentator_part3_cardiac_1559subj",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 1.5,
6
+ 1.5,
7
+ 1.5
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 227,
11
+ 227,
12
+ 240
13
+ ],
14
+ "image_reader_writer": "NibabelIOWithReorient",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 47,
30
+ "patch_size": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 227.0,
36
+ 239.0
37
+ ],
38
+ "spacing": [
39
+ 1.5,
40
+ 1.5
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "UNet_class_name": "PlainConvUNet",
49
+ "UNet_base_num_features": 32,
50
+ "n_conv_per_stage_encoder": [
51
+ 2,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 2,
56
+ 2,
57
+ 2
58
+ ],
59
+ "n_conv_per_stage_decoder": [
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 2,
65
+ 2
66
+ ],
67
+ "num_pool_per_axis": [
68
+ 6,
69
+ 6
70
+ ],
71
+ "pool_op_kernel_sizes": [
72
+ [
73
+ 1,
74
+ 1
75
+ ],
76
+ [
77
+ 2,
78
+ 2
79
+ ],
80
+ [
81
+ 2,
82
+ 2
83
+ ],
84
+ [
85
+ 2,
86
+ 2
87
+ ],
88
+ [
89
+ 2,
90
+ 2
91
+ ],
92
+ [
93
+ 2,
94
+ 2
95
+ ],
96
+ [
97
+ 2,
98
+ 2
99
+ ]
100
+ ],
101
+ "conv_kernel_sizes": [
102
+ [
103
+ 3,
104
+ 3
105
+ ],
106
+ [
107
+ 3,
108
+ 3
109
+ ],
110
+ [
111
+ 3,
112
+ 3
113
+ ],
114
+ [
115
+ 3,
116
+ 3
117
+ ],
118
+ [
119
+ 3,
120
+ 3
121
+ ],
122
+ [
123
+ 3,
124
+ 3
125
+ ],
126
+ [
127
+ 3,
128
+ 3
129
+ ]
130
+ ],
131
+ "unet_max_num_features": 512,
132
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
133
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
134
+ "resampling_fn_data_kwargs": {
135
+ "is_seg": false,
136
+ "order": 3,
137
+ "order_z": 0,
138
+ "force_separate_z": null
139
+ },
140
+ "resampling_fn_seg_kwargs": {
141
+ "is_seg": true,
142
+ "order": 1,
143
+ "order_z": 0,
144
+ "force_separate_z": null
145
+ },
146
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
147
+ "resampling_fn_probabilities_kwargs": {
148
+ "is_seg": false,
149
+ "order": 1,
150
+ "order_z": 0,
151
+ "force_separate_z": null
152
+ },
153
+ "batch_dice": true
154
+ },
155
+ "3d_lowres": {
156
+ "data_identifier": "nnUNetPlans_3d_lowres",
157
+ "preprocessor_name": "DefaultPreprocessor",
158
+ "batch_size": 2,
159
+ "patch_size": [
160
+ 128,
161
+ 128,
162
+ 128
163
+ ],
164
+ "median_image_size_in_voxels": [
165
+ 196,
166
+ 196,
167
+ 206
168
+ ],
169
+ "spacing": [
170
+ 1.7389111114500002,
171
+ 1.7389111114500002,
172
+ 1.7389111114500002
173
+ ],
174
+ "normalization_schemes": [
175
+ "CTNormalization"
176
+ ],
177
+ "use_mask_for_norm": [
178
+ false
179
+ ],
180
+ "UNet_class_name": "PlainConvUNet",
181
+ "UNet_base_num_features": 32,
182
+ "n_conv_per_stage_encoder": [
183
+ 2,
184
+ 2,
185
+ 2,
186
+ 2,
187
+ 2,
188
+ 2
189
+ ],
190
+ "n_conv_per_stage_decoder": [
191
+ 2,
192
+ 2,
193
+ 2,
194
+ 2,
195
+ 2
196
+ ],
197
+ "num_pool_per_axis": [
198
+ 5,
199
+ 5,
200
+ 5
201
+ ],
202
+ "pool_op_kernel_sizes": [
203
+ [
204
+ 1,
205
+ 1,
206
+ 1
207
+ ],
208
+ [
209
+ 2,
210
+ 2,
211
+ 2
212
+ ],
213
+ [
214
+ 2,
215
+ 2,
216
+ 2
217
+ ],
218
+ [
219
+ 2,
220
+ 2,
221
+ 2
222
+ ],
223
+ [
224
+ 2,
225
+ 2,
226
+ 2
227
+ ],
228
+ [
229
+ 2,
230
+ 2,
231
+ 2
232
+ ]
233
+ ],
234
+ "conv_kernel_sizes": [
235
+ [
236
+ 3,
237
+ 3,
238
+ 3
239
+ ],
240
+ [
241
+ 3,
242
+ 3,
243
+ 3
244
+ ],
245
+ [
246
+ 3,
247
+ 3,
248
+ 3
249
+ ],
250
+ [
251
+ 3,
252
+ 3,
253
+ 3
254
+ ],
255
+ [
256
+ 3,
257
+ 3,
258
+ 3
259
+ ],
260
+ [
261
+ 3,
262
+ 3,
263
+ 3
264
+ ]
265
+ ],
266
+ "unet_max_num_features": 320,
267
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
268
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
269
+ "resampling_fn_data_kwargs": {
270
+ "is_seg": false,
271
+ "order": 3,
272
+ "order_z": 0,
273
+ "force_separate_z": null
274
+ },
275
+ "resampling_fn_seg_kwargs": {
276
+ "is_seg": true,
277
+ "order": 1,
278
+ "order_z": 0,
279
+ "force_separate_z": null
280
+ },
281
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
282
+ "resampling_fn_probabilities_kwargs": {
283
+ "is_seg": false,
284
+ "order": 1,
285
+ "order_z": 0,
286
+ "force_separate_z": null
287
+ },
288
+ "batch_dice": false,
289
+ "next_stage": "3d_cascade_fullres"
290
+ },
291
+ "3d_fullres": {
292
+ "data_identifier": "nnUNetPlans_3d_fullres",
293
+ "preprocessor_name": "DefaultPreprocessor",
294
+ "batch_size": 2,
295
+ "patch_size": [
296
+ 128,
297
+ 128,
298
+ 128
299
+ ],
300
+ "median_image_size_in_voxels": [
301
+ 227.0,
302
+ 227.0,
303
+ 239.0
304
+ ],
305
+ "spacing": [
306
+ 1.5,
307
+ 1.5,
308
+ 1.5
309
+ ],
310
+ "normalization_schemes": [
311
+ "CTNormalization"
312
+ ],
313
+ "use_mask_for_norm": [
314
+ false
315
+ ],
316
+ "UNet_class_name": "PlainConvUNet",
317
+ "UNet_base_num_features": 32,
318
+ "n_conv_per_stage_encoder": [
319
+ 2,
320
+ 2,
321
+ 2,
322
+ 2,
323
+ 2,
324
+ 2
325
+ ],
326
+ "n_conv_per_stage_decoder": [
327
+ 2,
328
+ 2,
329
+ 2,
330
+ 2,
331
+ 2
332
+ ],
333
+ "num_pool_per_axis": [
334
+ 5,
335
+ 5,
336
+ 5
337
+ ],
338
+ "pool_op_kernel_sizes": [
339
+ [
340
+ 1,
341
+ 1,
342
+ 1
343
+ ],
344
+ [
345
+ 2,
346
+ 2,
347
+ 2
348
+ ],
349
+ [
350
+ 2,
351
+ 2,
352
+ 2
353
+ ],
354
+ [
355
+ 2,
356
+ 2,
357
+ 2
358
+ ],
359
+ [
360
+ 2,
361
+ 2,
362
+ 2
363
+ ],
364
+ [
365
+ 2,
366
+ 2,
367
+ 2
368
+ ]
369
+ ],
370
+ "conv_kernel_sizes": [
371
+ [
372
+ 3,
373
+ 3,
374
+ 3
375
+ ],
376
+ [
377
+ 3,
378
+ 3,
379
+ 3
380
+ ],
381
+ [
382
+ 3,
383
+ 3,
384
+ 3
385
+ ],
386
+ [
387
+ 3,
388
+ 3,
389
+ 3
390
+ ],
391
+ [
392
+ 3,
393
+ 3,
394
+ 3
395
+ ],
396
+ [
397
+ 3,
398
+ 3,
399
+ 3
400
+ ]
401
+ ],
402
+ "unet_max_num_features": 320,
403
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
404
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
405
+ "resampling_fn_data_kwargs": {
406
+ "is_seg": false,
407
+ "order": 3,
408
+ "order_z": 0,
409
+ "force_separate_z": null
410
+ },
411
+ "resampling_fn_seg_kwargs": {
412
+ "is_seg": true,
413
+ "order": 1,
414
+ "order_z": 0,
415
+ "force_separate_z": null
416
+ },
417
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
418
+ "resampling_fn_probabilities_kwargs": {
419
+ "is_seg": false,
420
+ "order": 1,
421
+ "order_z": 0,
422
+ "force_separate_z": null
423
+ },
424
+ "batch_dice": true
425
+ },
426
+ "3d_cascade_fullres": {
427
+ "inherits_from": "3d_fullres",
428
+ "previous_stage": "3d_lowres"
429
+ }
430
+ },
431
+ "experiment_planner_used": "ExperimentPlanner",
432
+ "label_manager": "LabelManager",
433
+ "foreground_intensity_properties_per_channel": {
434
+ "0": {
435
+ "max": 6666.0,
436
+ "mean": 142.1977119916391,
437
+ "median": 108.0,
438
+ "min": -1551.0,
439
+ "percentile_00_5": -101.0,
440
+ "percentile_99_5": 813.0,
441
+ "std": 154.74032651622053
442
+ }
443
+ }
444
+ }
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Segmentation of X",
3
+ "description": "Segmentation",
4
+ "reference": "Jakob",
5
+ "licence": "-",
6
+ "release": "0.0",
7
+ "channel_names": {
8
+ "0": "CT"
9
+ },
10
+ "labels": {
11
+ "background": 0,
12
+ "humerus_left": 1,
13
+ "humerus_right": 2,
14
+ "scapula_left": 3,
15
+ "scapula_right": 4,
16
+ "clavicula_left": 5,
17
+ "clavicula_right": 6,
18
+ "femur_left": 7,
19
+ "femur_right": 8,
20
+ "hip_left": 9,
21
+ "hip_right": 10,
22
+ "spinal_cord": 11,
23
+ "gluteus_maximus_left": 12,
24
+ "gluteus_maximus_right": 13,
25
+ "gluteus_medius_left": 14,
26
+ "gluteus_medius_right": 15,
27
+ "gluteus_minimus_left": 16,
28
+ "gluteus_minimus_right": 17,
29
+ "autochthon_left": 18,
30
+ "autochthon_right": 19,
31
+ "iliopsoas_left": 20,
32
+ "iliopsoas_right": 21,
33
+ "brain": 22,
34
+ "skull": 23
35
+ },
36
+ "numTraining": 1559,
37
+ "file_ending": ".nii.gz",
38
+ "overwrite_image_reader_writer": "NibabelIOWithReorient"
39
+ }
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:655eb40de03aa3de7348b69d7569a1cc3a2dc7969a11c0d60a7331e07df11c28
3
+ size 251633339
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8700,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f2f6c3131c0>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f2f6c313d60>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f2f6c313100>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f2f6c313370>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'humerus_left': 1, 'humerus_right': 2, 'scapula_left': 3, 'scapula_right': 4, 'clavicula_left': 5, 'clavicula_right': 6, 'femur_left': 7, 'femur_right': 8, 'hip_left': 9, 'hip_right': 10, 'spinal_cord': 11, 'gluteus_maximus_left': 12, 'gluteus_maximus_right': 13, 'gluteus_medius_left': 14, 'gluteus_medius_right': 15, 'gluteus_minimus_left': 16, 'gluteus_minimus_right': 17, 'autochthon_left': 18, 'autochthon_right': 19, 'iliopsoas_left': 20, 'iliopsoas_right': 21, 'brain': 22, 'skull': 23}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f2f727c0dc0>",
23
+ "hostname": "rndapollolp01.uhbs.ch",
24
+ "inference_allowed_mirroring_axes": "None",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f2f727c0e50>",
29
+ "local_rank": "0",
30
+ "log_file": "/mnt/nor/nnunet/results_v2/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_8_12_49_07.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f2f727c06a0>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f2f7270c2b0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset294_TotalSegmentator_part4_muscles_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 44594.0, 'mean': 174.82106003593222, 'median': 52.0, 'min': -49831.0, 'percentile_00_5': -197.0, 'percentile_99_5': 1729.0, 'std': 362.496044938386}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'humerus_left': 1, 'humerus_right': 2, 'scapula_left': 3, 'scapula_right': 4, 'clavicula_left': 5, 'clavicula_right': 6, 'femur_left': 7, 'femur_right': 8, 'hip_left': 9, 'hip_right': 10, 'spinal_cord': 11, 'gluteus_maximus_left': 12, 'gluteus_maximus_right': 13, 'gluteus_medius_left': 14, 'gluteus_medius_right': 15, 'gluteus_minimus_left': 16, 'gluteus_minimus_right': 17, 'autochthon_left': 18, 'autochthon_right': 19, 'iliopsoas_left': 20, 'iliopsoas_right': 21, 'brain': 22, 'skull': 23}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/mnt/nor/nnunet/results_v2/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
42
+ "output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset294_TotalSegmentator_part4_muscles_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 44594.0, 'mean': 174.82106003593222, 'median': 52.0, 'min': -49831.0, 'percentile_00_5': -197.0, 'percentile_99_5': 1729.0, 'std': 362.496044938386}}}",
45
+ "preprocessed_dataset_folder": "/dojo/Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/dojo/Dataset294_TotalSegmentator_part4_muscles_1559subj",
47
+ "save_every": "50",
48
+ "torch_version": "2.0.0",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png ADDED
Dataset294_TotalSegmentator_part4_muscles_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset294_TotalSegmentator_part4_muscles_1559subj",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 1.5,
6
+ 1.5,
7
+ 1.5
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 227,
11
+ 227,
12
+ 240
13
+ ],
14
+ "image_reader_writer": "NibabelIOWithReorient",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 46,
30
+ "patch_size": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 227.0,
36
+ 239.0
37
+ ],
38
+ "spacing": [
39
+ 1.5,
40
+ 1.5
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "UNet_class_name": "PlainConvUNet",
49
+ "UNet_base_num_features": 32,
50
+ "n_conv_per_stage_encoder": [
51
+ 2,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 2,
56
+ 2,
57
+ 2
58
+ ],
59
+ "n_conv_per_stage_decoder": [
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 2,
65
+ 2
66
+ ],
67
+ "num_pool_per_axis": [
68
+ 6,
69
+ 6
70
+ ],
71
+ "pool_op_kernel_sizes": [
72
+ [
73
+ 1,
74
+ 1
75
+ ],
76
+ [
77
+ 2,
78
+ 2
79
+ ],
80
+ [
81
+ 2,
82
+ 2
83
+ ],
84
+ [
85
+ 2,
86
+ 2
87
+ ],
88
+ [
89
+ 2,
90
+ 2
91
+ ],
92
+ [
93
+ 2,
94
+ 2
95
+ ],
96
+ [
97
+ 2,
98
+ 2
99
+ ]
100
+ ],
101
+ "conv_kernel_sizes": [
102
+ [
103
+ 3,
104
+ 3
105
+ ],
106
+ [
107
+ 3,
108
+ 3
109
+ ],
110
+ [
111
+ 3,
112
+ 3
113
+ ],
114
+ [
115
+ 3,
116
+ 3
117
+ ],
118
+ [
119
+ 3,
120
+ 3
121
+ ],
122
+ [
123
+ 3,
124
+ 3
125
+ ],
126
+ [
127
+ 3,
128
+ 3
129
+ ]
130
+ ],
131
+ "unet_max_num_features": 512,
132
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
133
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
134
+ "resampling_fn_data_kwargs": {
135
+ "is_seg": false,
136
+ "order": 3,
137
+ "order_z": 0,
138
+ "force_separate_z": null
139
+ },
140
+ "resampling_fn_seg_kwargs": {
141
+ "is_seg": true,
142
+ "order": 1,
143
+ "order_z": 0,
144
+ "force_separate_z": null
145
+ },
146
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
147
+ "resampling_fn_probabilities_kwargs": {
148
+ "is_seg": false,
149
+ "order": 1,
150
+ "order_z": 0,
151
+ "force_separate_z": null
152
+ },
153
+ "batch_dice": true
154
+ },
155
+ "3d_lowres": {
156
+ "data_identifier": "nnUNetPlans_3d_lowres",
157
+ "preprocessor_name": "DefaultPreprocessor",
158
+ "batch_size": 2,
159
+ "patch_size": [
160
+ 128,
161
+ 128,
162
+ 128
163
+ ],
164
+ "median_image_size_in_voxels": [
165
+ 196,
166
+ 196,
167
+ 206
168
+ ],
169
+ "spacing": [
170
+ 1.7389111114500002,
171
+ 1.7389111114500002,
172
+ 1.7389111114500002
173
+ ],
174
+ "normalization_schemes": [
175
+ "CTNormalization"
176
+ ],
177
+ "use_mask_for_norm": [
178
+ false
179
+ ],
180
+ "UNet_class_name": "PlainConvUNet",
181
+ "UNet_base_num_features": 32,
182
+ "n_conv_per_stage_encoder": [
183
+ 2,
184
+ 2,
185
+ 2,
186
+ 2,
187
+ 2,
188
+ 2
189
+ ],
190
+ "n_conv_per_stage_decoder": [
191
+ 2,
192
+ 2,
193
+ 2,
194
+ 2,
195
+ 2
196
+ ],
197
+ "num_pool_per_axis": [
198
+ 5,
199
+ 5,
200
+ 5
201
+ ],
202
+ "pool_op_kernel_sizes": [
203
+ [
204
+ 1,
205
+ 1,
206
+ 1
207
+ ],
208
+ [
209
+ 2,
210
+ 2,
211
+ 2
212
+ ],
213
+ [
214
+ 2,
215
+ 2,
216
+ 2
217
+ ],
218
+ [
219
+ 2,
220
+ 2,
221
+ 2
222
+ ],
223
+ [
224
+ 2,
225
+ 2,
226
+ 2
227
+ ],
228
+ [
229
+ 2,
230
+ 2,
231
+ 2
232
+ ]
233
+ ],
234
+ "conv_kernel_sizes": [
235
+ [
236
+ 3,
237
+ 3,
238
+ 3
239
+ ],
240
+ [
241
+ 3,
242
+ 3,
243
+ 3
244
+ ],
245
+ [
246
+ 3,
247
+ 3,
248
+ 3
249
+ ],
250
+ [
251
+ 3,
252
+ 3,
253
+ 3
254
+ ],
255
+ [
256
+ 3,
257
+ 3,
258
+ 3
259
+ ],
260
+ [
261
+ 3,
262
+ 3,
263
+ 3
264
+ ]
265
+ ],
266
+ "unet_max_num_features": 320,
267
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
268
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
269
+ "resampling_fn_data_kwargs": {
270
+ "is_seg": false,
271
+ "order": 3,
272
+ "order_z": 0,
273
+ "force_separate_z": null
274
+ },
275
+ "resampling_fn_seg_kwargs": {
276
+ "is_seg": true,
277
+ "order": 1,
278
+ "order_z": 0,
279
+ "force_separate_z": null
280
+ },
281
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
282
+ "resampling_fn_probabilities_kwargs": {
283
+ "is_seg": false,
284
+ "order": 1,
285
+ "order_z": 0,
286
+ "force_separate_z": null
287
+ },
288
+ "batch_dice": false,
289
+ "next_stage": "3d_cascade_fullres"
290
+ },
291
+ "3d_fullres": {
292
+ "data_identifier": "nnUNetPlans_3d_fullres",
293
+ "preprocessor_name": "DefaultPreprocessor",
294
+ "batch_size": 2,
295
+ "patch_size": [
296
+ 128,
297
+ 128,
298
+ 128
299
+ ],
300
+ "median_image_size_in_voxels": [
301
+ 227.0,
302
+ 227.0,
303
+ 239.0
304
+ ],
305
+ "spacing": [
306
+ 1.5,
307
+ 1.5,
308
+ 1.5
309
+ ],
310
+ "normalization_schemes": [
311
+ "CTNormalization"
312
+ ],
313
+ "use_mask_for_norm": [
314
+ false
315
+ ],
316
+ "UNet_class_name": "PlainConvUNet",
317
+ "UNet_base_num_features": 32,
318
+ "n_conv_per_stage_encoder": [
319
+ 2,
320
+ 2,
321
+ 2,
322
+ 2,
323
+ 2,
324
+ 2
325
+ ],
326
+ "n_conv_per_stage_decoder": [
327
+ 2,
328
+ 2,
329
+ 2,
330
+ 2,
331
+ 2
332
+ ],
333
+ "num_pool_per_axis": [
334
+ 5,
335
+ 5,
336
+ 5
337
+ ],
338
+ "pool_op_kernel_sizes": [
339
+ [
340
+ 1,
341
+ 1,
342
+ 1
343
+ ],
344
+ [
345
+ 2,
346
+ 2,
347
+ 2
348
+ ],
349
+ [
350
+ 2,
351
+ 2,
352
+ 2
353
+ ],
354
+ [
355
+ 2,
356
+ 2,
357
+ 2
358
+ ],
359
+ [
360
+ 2,
361
+ 2,
362
+ 2
363
+ ],
364
+ [
365
+ 2,
366
+ 2,
367
+ 2
368
+ ]
369
+ ],
370
+ "conv_kernel_sizes": [
371
+ [
372
+ 3,
373
+ 3,
374
+ 3
375
+ ],
376
+ [
377
+ 3,
378
+ 3,
379
+ 3
380
+ ],
381
+ [
382
+ 3,
383
+ 3,
384
+ 3
385
+ ],
386
+ [
387
+ 3,
388
+ 3,
389
+ 3
390
+ ],
391
+ [
392
+ 3,
393
+ 3,
394
+ 3
395
+ ],
396
+ [
397
+ 3,
398
+ 3,
399
+ 3
400
+ ]
401
+ ],
402
+ "unet_max_num_features": 320,
403
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
404
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
405
+ "resampling_fn_data_kwargs": {
406
+ "is_seg": false,
407
+ "order": 3,
408
+ "order_z": 0,
409
+ "force_separate_z": null
410
+ },
411
+ "resampling_fn_seg_kwargs": {
412
+ "is_seg": true,
413
+ "order": 1,
414
+ "order_z": 0,
415
+ "force_separate_z": null
416
+ },
417
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
418
+ "resampling_fn_probabilities_kwargs": {
419
+ "is_seg": false,
420
+ "order": 1,
421
+ "order_z": 0,
422
+ "force_separate_z": null
423
+ },
424
+ "batch_dice": true
425
+ },
426
+ "3d_cascade_fullres": {
427
+ "inherits_from": "3d_fullres",
428
+ "previous_stage": "3d_lowres"
429
+ }
430
+ },
431
+ "experiment_planner_used": "ExperimentPlanner",
432
+ "label_manager": "LabelManager",
433
+ "foreground_intensity_properties_per_channel": {
434
+ "0": {
435
+ "max": 44594.0,
436
+ "mean": 174.82106003593222,
437
+ "median": 52.0,
438
+ "min": -49831.0,
439
+ "percentile_00_5": -197.0,
440
+ "percentile_99_5": 1729.0,
441
+ "std": 362.496044938386
442
+ }
443
+ }
444
+ }
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Segmentation of X",
3
+ "description": "Segmentation",
4
+ "reference": "Jakob",
5
+ "licence": "-",
6
+ "release": "0.0",
7
+ "channel_names": {
8
+ "0": "CT"
9
+ },
10
+ "labels": {
11
+ "background": 0,
12
+ "rib_left_1": 1,
13
+ "rib_left_2": 2,
14
+ "rib_left_3": 3,
15
+ "rib_left_4": 4,
16
+ "rib_left_5": 5,
17
+ "rib_left_6": 6,
18
+ "rib_left_7": 7,
19
+ "rib_left_8": 8,
20
+ "rib_left_9": 9,
21
+ "rib_left_10": 10,
22
+ "rib_left_11": 11,
23
+ "rib_left_12": 12,
24
+ "rib_right_1": 13,
25
+ "rib_right_2": 14,
26
+ "rib_right_3": 15,
27
+ "rib_right_4": 16,
28
+ "rib_right_5": 17,
29
+ "rib_right_6": 18,
30
+ "rib_right_7": 19,
31
+ "rib_right_8": 20,
32
+ "rib_right_9": 21,
33
+ "rib_right_10": 22,
34
+ "rib_right_11": 23,
35
+ "rib_right_12": 24,
36
+ "sternum": 25,
37
+ "costal_cartilages": 26
38
+ },
39
+ "numTraining": 1559,
40
+ "file_ending": ".nii.gz",
41
+ "overwrite_image_reader_writer": "NibabelIOWithReorient"
42
+ }
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a674364c60b304fbd56feccdd95f8d0fe0c45a5bfa1ef25815516e4dde04d3fc
3
+ size 251846011
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8700,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7efb2425f4f0>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7efb2425f400>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [128, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7efb2425f790>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7efb2425f490>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'rib_left_1': 1, 'rib_left_2': 2, 'rib_left_3': 3, 'rib_left_4': 4, 'rib_left_5': 5, 'rib_left_6': 6, 'rib_left_7': 7, 'rib_left_8': 8, 'rib_left_9': 9, 'rib_left_10': 10, 'rib_left_11': 11, 'rib_left_12': 12, 'rib_right_1': 13, 'rib_right_2': 14, 'rib_right_3': 15, 'rib_right_4': 16, 'rib_right_5': 17, 'rib_right_6': 18, 'rib_right_7': 19, 'rib_right_8': 20, 'rib_right_9': 21, 'rib_right_10': 22, 'rib_right_11': 23, 'rib_right_12': 24, 'sternum': 25, 'costal_cartilages': 26}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA A100-SXM4-80GB MIG 7g.80gb",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7efb2b960dc0>",
23
+ "hostname": "rndapollolp01.uhbs.ch",
24
+ "inference_allowed_mirroring_axes": "None",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7efb2b960d60>",
29
+ "local_rank": "0",
30
+ "log_file": "/mnt/nor/nnunet/results_v2/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_14_05_58_11.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7efb2b9606a0>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7efb2b8ac2b0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset295_TotalSegmentator_part5_ribs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 21501.0, 'mean': 291.98966240726804, 'median': 220.0, 'min': -2437.0, 'percentile_00_5': -110.0, 'percentile_99_5': 1302.0, 'std': 261.53174290110513}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Segmentation of X', 'description': 'Segmentation', 'reference': 'Jakob', 'licence': '-', 'release': '0.0', 'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'rib_left_1': 1, 'rib_left_2': 2, 'rib_left_3': 3, 'rib_left_4': 4, 'rib_left_5': 5, 'rib_left_6': 6, 'rib_left_7': 7, 'rib_left_8': 8, 'rib_left_9': 9, 'rib_left_10': 10, 'rib_left_11': 11, 'rib_left_12': 12, 'rib_right_1': 13, 'rib_right_2': 14, 'rib_right_3': 15, 'rib_right_4': 16, 'rib_right_5': 17, 'rib_right_6': 18, 'rib_right_7': 19, 'rib_right_8': 20, 'rib_right_9': 21, 'rib_right_10': 22, 'rib_right_11': 23, 'rib_right_12': 24, 'sternum': 25, 'costal_cartilages': 26}, 'numTraining': 1559, 'file_ending': '.nii.gz', 'overwrite_image_reader_writer': 'NibabelIOWithReorient'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/mnt/nor/nnunet/results_v2/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0",
42
+ "output_folder_base": "/mnt/nor/nnunet/results_v2/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset295_TotalSegmentator_part5_ribs_1559subj', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.5, 1.5, 1.5], 'original_median_shape_after_transp': [227, 227, 240], 'image_reader_writer': 'NibabelIOWithReorient', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 46, 'patch_size': [256, 256], 'median_image_size_in_voxels': [227.0, 239.0], 'spacing': [1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [196, 196, 206], 'spacing': [1.7389111114500002, 1.7389111114500002, 1.7389111114500002], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [227.0, 227.0, 239.0], 'spacing': [1.5, 1.5, 1.5], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 21501.0, 'mean': 291.98966240726804, 'median': 220.0, 'min': -2437.0, 'percentile_00_5': -110.0, 'percentile_99_5': 1302.0, 'std': 261.53174290110513}}}",
45
+ "preprocessed_dataset_folder": "/dojo/Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/dojo/Dataset295_TotalSegmentator_part5_ribs_1559subj",
47
+ "save_every": "50",
48
+ "torch_version": "2.0.0",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/fold_0/progress.png ADDED
Dataset295_TotalSegmentator_part5_ribs_1559subj/nnUNetTrainerNoMirroring__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset295_TotalSegmentator_part5_ribs_1559subj",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 1.5,
6
+ 1.5,
7
+ 1.5
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 227,
11
+ 227,
12
+ 240
13
+ ],
14
+ "image_reader_writer": "NibabelIOWithReorient",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 46,
30
+ "patch_size": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 227.0,
36
+ 239.0
37
+ ],
38
+ "spacing": [
39
+ 1.5,
40
+ 1.5
41
+ ],
42
+ "normalization_schemes": [
43
+ "CTNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "UNet_class_name": "PlainConvUNet",
49
+ "UNet_base_num_features": 32,
50
+ "n_conv_per_stage_encoder": [
51
+ 2,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 2,
56
+ 2,
57
+ 2
58
+ ],
59
+ "n_conv_per_stage_decoder": [
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 2,
65
+ 2
66
+ ],
67
+ "num_pool_per_axis": [
68
+ 6,
69
+ 6
70
+ ],
71
+ "pool_op_kernel_sizes": [
72
+ [
73
+ 1,
74
+ 1
75
+ ],
76
+ [
77
+ 2,
78
+ 2
79
+ ],
80
+ [
81
+ 2,
82
+ 2
83
+ ],
84
+ [
85
+ 2,
86
+ 2
87
+ ],
88
+ [
89
+ 2,
90
+ 2
91
+ ],
92
+ [
93
+ 2,
94
+ 2
95
+ ],
96
+ [
97
+ 2,
98
+ 2
99
+ ]
100
+ ],
101
+ "conv_kernel_sizes": [
102
+ [
103
+ 3,
104
+ 3
105
+ ],
106
+ [
107
+ 3,
108
+ 3
109
+ ],
110
+ [
111
+ 3,
112
+ 3
113
+ ],
114
+ [
115
+ 3,
116
+ 3
117
+ ],
118
+ [
119
+ 3,
120
+ 3
121
+ ],
122
+ [
123
+ 3,
124
+ 3
125
+ ],
126
+ [
127
+ 3,
128
+ 3
129
+ ]
130
+ ],
131
+ "unet_max_num_features": 512,
132
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
133
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
134
+ "resampling_fn_data_kwargs": {
135
+ "is_seg": false,
136
+ "order": 3,
137
+ "order_z": 0,
138
+ "force_separate_z": null
139
+ },
140
+ "resampling_fn_seg_kwargs": {
141
+ "is_seg": true,
142
+ "order": 1,
143
+ "order_z": 0,
144
+ "force_separate_z": null
145
+ },
146
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
147
+ "resampling_fn_probabilities_kwargs": {
148
+ "is_seg": false,
149
+ "order": 1,
150
+ "order_z": 0,
151
+ "force_separate_z": null
152
+ },
153
+ "batch_dice": true
154
+ },
155
+ "3d_lowres": {
156
+ "data_identifier": "nnUNetPlans_3d_lowres",
157
+ "preprocessor_name": "DefaultPreprocessor",
158
+ "batch_size": 2,
159
+ "patch_size": [
160
+ 128,
161
+ 128,
162
+ 128
163
+ ],
164
+ "median_image_size_in_voxels": [
165
+ 196,
166
+ 196,
167
+ 206
168
+ ],
169
+ "spacing": [
170
+ 1.7389111114500002,
171
+ 1.7389111114500002,
172
+ 1.7389111114500002
173
+ ],
174
+ "normalization_schemes": [
175
+ "CTNormalization"
176
+ ],
177
+ "use_mask_for_norm": [
178
+ false
179
+ ],
180
+ "UNet_class_name": "PlainConvUNet",
181
+ "UNet_base_num_features": 32,
182
+ "n_conv_per_stage_encoder": [
183
+ 2,
184
+ 2,
185
+ 2,
186
+ 2,
187
+ 2,
188
+ 2
189
+ ],
190
+ "n_conv_per_stage_decoder": [
191
+ 2,
192
+ 2,
193
+ 2,
194
+ 2,
195
+ 2
196
+ ],
197
+ "num_pool_per_axis": [
198
+ 5,
199
+ 5,
200
+ 5
201
+ ],
202
+ "pool_op_kernel_sizes": [
203
+ [
204
+ 1,
205
+ 1,
206
+ 1
207
+ ],
208
+ [
209
+ 2,
210
+ 2,
211
+ 2
212
+ ],
213
+ [
214
+ 2,
215
+ 2,
216
+ 2
217
+ ],
218
+ [
219
+ 2,
220
+ 2,
221
+ 2
222
+ ],
223
+ [
224
+ 2,
225
+ 2,
226
+ 2
227
+ ],
228
+ [
229
+ 2,
230
+ 2,
231
+ 2
232
+ ]
233
+ ],
234
+ "conv_kernel_sizes": [
235
+ [
236
+ 3,
237
+ 3,
238
+ 3
239
+ ],
240
+ [
241
+ 3,
242
+ 3,
243
+ 3
244
+ ],
245
+ [
246
+ 3,
247
+ 3,
248
+ 3
249
+ ],
250
+ [
251
+ 3,
252
+ 3,
253
+ 3
254
+ ],
255
+ [
256
+ 3,
257
+ 3,
258
+ 3
259
+ ],
260
+ [
261
+ 3,
262
+ 3,
263
+ 3
264
+ ]
265
+ ],
266
+ "unet_max_num_features": 320,
267
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
268
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
269
+ "resampling_fn_data_kwargs": {
270
+ "is_seg": false,
271
+ "order": 3,
272
+ "order_z": 0,
273
+ "force_separate_z": null
274
+ },
275
+ "resampling_fn_seg_kwargs": {
276
+ "is_seg": true,
277
+ "order": 1,
278
+ "order_z": 0,
279
+ "force_separate_z": null
280
+ },
281
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
282
+ "resampling_fn_probabilities_kwargs": {
283
+ "is_seg": false,
284
+ "order": 1,
285
+ "order_z": 0,
286
+ "force_separate_z": null
287
+ },
288
+ "batch_dice": false,
289
+ "next_stage": "3d_cascade_fullres"
290
+ },
291
+ "3d_fullres": {
292
+ "data_identifier": "nnUNetPlans_3d_fullres",
293
+ "preprocessor_name": "DefaultPreprocessor",
294
+ "batch_size": 2,
295
+ "patch_size": [
296
+ 128,
297
+ 128,
298
+ 128
299
+ ],
300
+ "median_image_size_in_voxels": [
301
+ 227.0,
302
+ 227.0,
303
+ 239.0
304
+ ],
305
+ "spacing": [
306
+ 1.5,
307
+ 1.5,
308
+ 1.5
309
+ ],
310
+ "normalization_schemes": [
311
+ "CTNormalization"
312
+ ],
313
+ "use_mask_for_norm": [
314
+ false
315
+ ],
316
+ "UNet_class_name": "PlainConvUNet",
317
+ "UNet_base_num_features": 32,
318
+ "n_conv_per_stage_encoder": [
319
+ 2,
320
+ 2,
321
+ 2,
322
+ 2,
323
+ 2,
324
+ 2
325
+ ],
326
+ "n_conv_per_stage_decoder": [
327
+ 2,
328
+ 2,
329
+ 2,
330
+ 2,
331
+ 2
332
+ ],
333
+ "num_pool_per_axis": [
334
+ 5,
335
+ 5,
336
+ 5
337
+ ],
338
+ "pool_op_kernel_sizes": [
339
+ [
340
+ 1,
341
+ 1,
342
+ 1
343
+ ],
344
+ [
345
+ 2,
346
+ 2,
347
+ 2
348
+ ],
349
+ [
350
+ 2,
351
+ 2,
352
+ 2
353
+ ],
354
+ [
355
+ 2,
356
+ 2,
357
+ 2
358
+ ],
359
+ [
360
+ 2,
361
+ 2,
362
+ 2
363
+ ],
364
+ [
365
+ 2,
366
+ 2,
367
+ 2
368
+ ]
369
+ ],
370
+ "conv_kernel_sizes": [
371
+ [
372
+ 3,
373
+ 3,
374
+ 3
375
+ ],
376
+ [
377
+ 3,
378
+ 3,
379
+ 3
380
+ ],
381
+ [
382
+ 3,
383
+ 3,
384
+ 3
385
+ ],
386
+ [
387
+ 3,
388
+ 3,
389
+ 3
390
+ ],
391
+ [
392
+ 3,
393
+ 3,
394
+ 3
395
+ ],
396
+ [
397
+ 3,
398
+ 3,
399
+ 3
400
+ ]
401
+ ],
402
+ "unet_max_num_features": 320,
403
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
404
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
405
+ "resampling_fn_data_kwargs": {
406
+ "is_seg": false,
407
+ "order": 3,
408
+ "order_z": 0,
409
+ "force_separate_z": null
410
+ },
411
+ "resampling_fn_seg_kwargs": {
412
+ "is_seg": true,
413
+ "order": 1,
414
+ "order_z": 0,
415
+ "force_separate_z": null
416
+ },
417
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
418
+ "resampling_fn_probabilities_kwargs": {
419
+ "is_seg": false,
420
+ "order": 1,
421
+ "order_z": 0,
422
+ "force_separate_z": null
423
+ },
424
+ "batch_dice": true
425
+ },
426
+ "3d_cascade_fullres": {
427
+ "inherits_from": "3d_fullres",
428
+ "previous_stage": "3d_lowres"
429
+ }
430
+ },
431
+ "experiment_planner_used": "ExperimentPlanner",
432
+ "label_manager": "LabelManager",
433
+ "foreground_intensity_properties_per_channel": {
434
+ "0": {
435
+ "max": 21501.0,
436
+ "mean": 291.98966240726804,
437
+ "median": 220.0,
438
+ "min": -2437.0,
439
+ "percentile_00_5": -110.0,
440
+ "percentile_99_5": 1302.0,
441
+ "std": 261.53174290110513
442
+ }
443
+ }
444
+ }
__MACOSX/._Dataset291_TotalSegmentator_part1_organs_1559subj ADDED
Binary file (544 Bytes). View file
 
__MACOSX/._Dataset292_TotalSegmentator_part2_vertebrae_1532subj ADDED
Binary file (547 Bytes). View file
 
__MACOSX/._Dataset293_TotalSegmentator_part3_cardiac_1559subj ADDED
Binary file (545 Bytes). View file
 
__MACOSX/._Dataset294_TotalSegmentator_part4_muscles_1559subj ADDED
Binary file (545 Bytes). View file