totsukash commited on
Commit
3b21bbb
·
verified ·
1 Parent(s): c4e1b75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -15
README.md CHANGED
@@ -39,9 +39,10 @@ from tqdm import tqdm
39
  import json
40
 
41
  # Hugging Faceで取得したTokenをこちらに貼る。
42
- HF_TOKEN = <YOUR TOKEN>
 
43
 
44
- # base_model_id = "llm-jp/llm-jp-3-13b"
45
  adapter_id = "totsukash/llm-jp-3-13b-finetune"
46
 
47
  # QLoRA config
@@ -68,7 +69,7 @@ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
68
  # データセットの読み込み。
69
  # (評価データセットのjsonlファイルのパスを設定してください)
70
  datasets = []
71
- with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
72
  item = ""
73
  for line in f:
74
  line = line.strip()
@@ -80,18 +81,18 @@ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
80
  # gemma
81
  results = []
82
  for data in tqdm(datasets):
83
-
84
- input = data["input"]
85
- prompt = f"""### 指示
86
- {input}
87
- ### 回答
88
- """
89
-
90
- input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
91
- outputs = model.generate(**input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2,)
92
- output = tokenizer.decode(outputs[0][input_ids.input_ids.size(1):], skip_special_tokens=True)
93
-
94
- results.append({"task_id": data["task_id"], "input": input, "output": output})
95
 
96
  # llmjp
97
  results = []
 
39
  import json
40
 
41
  # Hugging Faceで取得したTokenをこちらに貼る。
42
+ from google.colab import userdata
43
+ HF_TOKEN = userdata.get('HF_TOKEN')
44
 
45
+ model_id = "llm-jp/llm-jp-3-13b"
46
  adapter_id = "totsukash/llm-jp-3-13b-finetune"
47
 
48
  # QLoRA config
 
69
  # データセットの読み込み。
70
  # (評価データセットのjsonlファイルのパスを設定してください)
71
  datasets = []
72
+ with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
73
  item = ""
74
  for line in f:
75
  line = line.strip()
 
81
  # gemma
82
  results = []
83
  for data in tqdm(datasets):
84
+ input = data["input"]
85
+ prompt = f"""### 指示
86
+ {input}
87
+ ### 回答
88
+ """
89
+
90
+ # input_ids だけを取り出して使用
91
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
92
+ outputs = model.generate(input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2)
93
+ output = tokenizer.decode(outputs[0][input_ids.size(1):], skip_special_tokens=True)
94
+
95
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
96
 
97
  # llmjp
98
  results = []