Translation
PEFT
Safetensors
traintogpb commited on
Commit
9d8b9cd
·
verified ·
1 Parent(s): 75d1d17

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -196
README.md CHANGED
@@ -1,202 +1,138 @@
1
  ---
2
- base_model: beomi/Llama-3-Open-Ko-8B
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.9.0
 
1
  ---
 
2
  library_name: peft
3
+ base_model:
4
+ - beomi/Llama-3-Open-Ko-8B
5
+ license: mit
6
+ datasets:
7
+ - traintogpb/aihub-mmt-integrated-prime-base-300k
8
+ language:
9
+ - en
10
+ - ko
11
+ - ja
12
+ - zh
13
+ pipeline_tag: translation
14
  ---
15
+ ### Pretrained LM
16
+ - [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) (MIT License)
17
+
18
+ ### Training Dataset
19
+ - [traintogpb/aihub-mmt-integrated-prime-base-300k](https://huggingface.co/datasets/traintogpb/aihub-mmt-integrated-prime-base-300k)
20
+ - Can translate in Korean <-> English / Japanese / Chinese (Korean-centered translation)
21
+
22
+ ### Prompt
23
+ - Template:
24
+ ```python
25
+ # one of 'src_lang' and 'tgt_lang' should be "한국어"
26
+ src_lang = "English" # English, 한국어, 日本語, 中文
27
+ tgt_lang = "한국어" # English, 한국어, 日本語, 中文
28
+ text = "New era, same empire. T1 is your 2024 Worlds champion!"
29
+
30
+ # task part
31
+ task_xml_dict = {
32
+ 'head': "<task>",
33
+ 'body': f"Translate the source sentence from {src_lang} to {tgt_lang}.\nBe sure to reflect the guidelines below when translating.",
34
+ 'tail': "</task>"
35
+ }
36
+ task = f"{task_xml_dict['head']}\n{task_xml_dict['body']}\n{task_xml_dict['tail']}"
37
+
38
+ # instruction part
39
+ instruction_xml_dict = {
40
+ 'head': "<instruction>",
41
+ 'body': ["Translate without any condition."],
42
+ 'tail': "</instruction>"
43
+ }
44
+ instruction_xml_body = '\n'.join([f'- {body}' for body in instruction_xml_dict['body']])
45
+ instruction = f"{instruction_xml_dict['head']}\n{instruction_xml_body}\n{instruction_xml_dict['tail']}"
46
+
47
+ # translation part
48
+ src_xml_dict = {
49
+ 'head': f"<source><{src_lang}>",
50
+ 'body': text.strip(),
51
+ 'tail': f"</{src_lang}></source>"
52
+ }
53
+ tgt_xml_dict = {
54
+ 'head': f"<target><{LLAMA_LANG_TABLE[tgt_lang]}>",
55
+ }
56
+ src = f"{src_xml_dict['head']}\n{src_xml_dict['body']}\n{src_xml_dict['tail']}"
57
+ tgt = f"{tgt_xml_dict['head']}\n"
58
+ translation_xml_dict = {
59
+ 'head': "<translation>",
60
+ 'body': f"{src}\n{tgt}",
61
+ }
62
+ translation = f"{translation_xml_dict['head']}\n{translation_xml_dict['body']}"
63
+
64
+ # final prompt
65
+ prompt = f"{task}\n\n{instruction}\n\n{translation}"
66
+ ```
67
+
68
+ - Example Input:
69
+ ```
70
+ <task>
71
+ Translate the source sentence from English to 한국어.
72
+ Be sure to reflect the guidelines below when translating.
73
+ </task>
74
+
75
+ <instruction>
76
+ - Translate without any condition.
77
+ </instruction>
78
+
79
+ <translation>
80
+ <source><English>
81
+ New era, same empire. T1 is your 2024 Worlds champion!
82
+ </English></source>
83
+ <target><한국어>
84
+ ```
85
+
86
+ - Expected Output:
87
+ ```
88
+ 새로운 시대, 여전한 왕조. 티원이 2024 월즈의 챔피언입니다!
89
+ </한국어></target>
90
+ </translation>
91
+ ```
92
+
93
+ ### Training
94
+ - Trained with LoRA adapter
95
+ - PLM: bfloat16
96
+ - Adapter: bfloat16
97
+ - Adapted to all the linear layers (around 2.05%)
98
+
99
+ ### Usage (IMPORTANT)
100
+ - Should remove the EOS token at the end of the prompt.
101
+ ```python
102
+ # MODEL
103
+ model_name = 'beomi/Llama-3-Open-Ko-8B'
104
+ adapter_name = 'traintogpb/llama-3-mmt-xml-it-sft-adapter'
105
+
106
+ model = AutoModelForCausalLM.from_pretrained(
107
+ model_name,
108
+ max_length=4000,
109
+ attn_implementation='flash_attention_2',
110
+ torch_dtype=torch.bfloat16,
111
+ )
112
+ model = PeftModel.from_pretrained(
113
+ model,
114
+ adapter_path=adapter_name,
115
+ torch_dtype=torch.bfloat16,
116
+ )
117
+
118
+ tokenizer = AutoTokenizer.from_pretrained(adapter_name)
119
+ tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different
120
+
121
+ text = "New era, same empire. T1 is your 2024 Worlds champion!"
122
+ input_prompt = "<task> ~ <target><{tgt_lang}>" # prompt with the template above
123
+ inputs = tokenizer(input_prompt, max_length=2000, truncation=True, return_tensors='pt')
124
+
125
+ if inputs['input_ids'][0][-1] == tokenizer.eos_token_id:
126
+ inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
127
+ inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
128
+
129
+ outputs = model.generate(**inputs, max_length=2000, eos_token_id=tokenizer.eos_token_id)
130
+
131
+ input_len = len(inputs['input_ids'].squeeze())
132
+ translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True)
133
+ print(translation)
134
+ ```
135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  ### Framework versions
137
 
138
+ - PEFT 0.8.2