traintogpb
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,138 @@
|
|
1 |
---
|
2 |
-
base_model: beomi/Llama-3-Open-Ko-8B
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
### Framework versions
|
201 |
|
202 |
-
- PEFT 0.
|
|
|
1 |
---
|
|
|
2 |
library_name: peft
|
3 |
+
base_model:
|
4 |
+
- beomi/Llama-3-Open-Ko-8B
|
5 |
+
license: mit
|
6 |
+
datasets:
|
7 |
+
- traintogpb/aihub-mmt-integrated-prime-base-300k
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- ko
|
11 |
+
- ja
|
12 |
+
- zh
|
13 |
+
pipeline_tag: translation
|
14 |
---
|
15 |
+
### Pretrained LM
|
16 |
+
- [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) (MIT License)
|
17 |
+
|
18 |
+
### Training Dataset
|
19 |
+
- [traintogpb/aihub-mmt-integrated-prime-base-300k](https://huggingface.co/datasets/traintogpb/aihub-mmt-integrated-prime-base-300k)
|
20 |
+
- Can translate in Korean <-> English / Japanese / Chinese (Korean-centered translation)
|
21 |
+
|
22 |
+
### Prompt
|
23 |
+
- Template:
|
24 |
+
```python
|
25 |
+
# one of 'src_lang' and 'tgt_lang' should be "한국어"
|
26 |
+
src_lang = "English" # English, 한국어, 日本語, 中文
|
27 |
+
tgt_lang = "한국어" # English, 한국어, 日本語, 中文
|
28 |
+
text = "New era, same empire. T1 is your 2024 Worlds champion!"
|
29 |
+
|
30 |
+
# task part
|
31 |
+
task_xml_dict = {
|
32 |
+
'head': "<task>",
|
33 |
+
'body': f"Translate the source sentence from {src_lang} to {tgt_lang}.\nBe sure to reflect the guidelines below when translating.",
|
34 |
+
'tail': "</task>"
|
35 |
+
}
|
36 |
+
task = f"{task_xml_dict['head']}\n{task_xml_dict['body']}\n{task_xml_dict['tail']}"
|
37 |
+
|
38 |
+
# instruction part
|
39 |
+
instruction_xml_dict = {
|
40 |
+
'head': "<instruction>",
|
41 |
+
'body': ["Translate without any condition."],
|
42 |
+
'tail': "</instruction>"
|
43 |
+
}
|
44 |
+
instruction_xml_body = '\n'.join([f'- {body}' for body in instruction_xml_dict['body']])
|
45 |
+
instruction = f"{instruction_xml_dict['head']}\n{instruction_xml_body}\n{instruction_xml_dict['tail']}"
|
46 |
+
|
47 |
+
# translation part
|
48 |
+
src_xml_dict = {
|
49 |
+
'head': f"<source><{src_lang}>",
|
50 |
+
'body': text.strip(),
|
51 |
+
'tail': f"</{src_lang}></source>"
|
52 |
+
}
|
53 |
+
tgt_xml_dict = {
|
54 |
+
'head': f"<target><{LLAMA_LANG_TABLE[tgt_lang]}>",
|
55 |
+
}
|
56 |
+
src = f"{src_xml_dict['head']}\n{src_xml_dict['body']}\n{src_xml_dict['tail']}"
|
57 |
+
tgt = f"{tgt_xml_dict['head']}\n"
|
58 |
+
translation_xml_dict = {
|
59 |
+
'head': "<translation>",
|
60 |
+
'body': f"{src}\n{tgt}",
|
61 |
+
}
|
62 |
+
translation = f"{translation_xml_dict['head']}\n{translation_xml_dict['body']}"
|
63 |
+
|
64 |
+
# final prompt
|
65 |
+
prompt = f"{task}\n\n{instruction}\n\n{translation}"
|
66 |
+
```
|
67 |
+
|
68 |
+
- Example Input:
|
69 |
+
```
|
70 |
+
<task>
|
71 |
+
Translate the source sentence from English to 한국어.
|
72 |
+
Be sure to reflect the guidelines below when translating.
|
73 |
+
</task>
|
74 |
+
|
75 |
+
<instruction>
|
76 |
+
- Translate without any condition.
|
77 |
+
</instruction>
|
78 |
+
|
79 |
+
<translation>
|
80 |
+
<source><English>
|
81 |
+
New era, same empire. T1 is your 2024 Worlds champion!
|
82 |
+
</English></source>
|
83 |
+
<target><한국어>
|
84 |
+
```
|
85 |
+
|
86 |
+
- Expected Output:
|
87 |
+
```
|
88 |
+
새로운 시대, 여전한 왕조. 티원이 2024 월즈의 챔피언입니다!
|
89 |
+
</한국어></target>
|
90 |
+
</translation>
|
91 |
+
```
|
92 |
+
|
93 |
+
### Training
|
94 |
+
- Trained with LoRA adapter
|
95 |
+
- PLM: bfloat16
|
96 |
+
- Adapter: bfloat16
|
97 |
+
- Adapted to all the linear layers (around 2.05%)
|
98 |
+
|
99 |
+
### Usage (IMPORTANT)
|
100 |
+
- Should remove the EOS token at the end of the prompt.
|
101 |
+
```python
|
102 |
+
# MODEL
|
103 |
+
model_name = 'beomi/Llama-3-Open-Ko-8B'
|
104 |
+
adapter_name = 'traintogpb/llama-3-mmt-xml-it-sft-adapter'
|
105 |
+
|
106 |
+
model = AutoModelForCausalLM.from_pretrained(
|
107 |
+
model_name,
|
108 |
+
max_length=4000,
|
109 |
+
attn_implementation='flash_attention_2',
|
110 |
+
torch_dtype=torch.bfloat16,
|
111 |
+
)
|
112 |
+
model = PeftModel.from_pretrained(
|
113 |
+
model,
|
114 |
+
adapter_path=adapter_name,
|
115 |
+
torch_dtype=torch.bfloat16,
|
116 |
+
)
|
117 |
+
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_name)
|
119 |
+
tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different
|
120 |
+
|
121 |
+
text = "New era, same empire. T1 is your 2024 Worlds champion!"
|
122 |
+
input_prompt = "<task> ~ <target><{tgt_lang}>" # prompt with the template above
|
123 |
+
inputs = tokenizer(input_prompt, max_length=2000, truncation=True, return_tensors='pt')
|
124 |
+
|
125 |
+
if inputs['input_ids'][0][-1] == tokenizer.eos_token_id:
|
126 |
+
inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
|
127 |
+
inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
|
128 |
+
|
129 |
+
outputs = model.generate(**inputs, max_length=2000, eos_token_id=tokenizer.eos_token_id)
|
130 |
+
|
131 |
+
input_len = len(inputs['input_ids'].squeeze())
|
132 |
+
translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True)
|
133 |
+
print(translation)
|
134 |
+
```
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
### Framework versions
|
137 |
|
138 |
+
- PEFT 0.8.2
|