--- library_name: peft base_model: - beomi/Llama-3-Open-Ko-8B license: mit datasets: - traintogpb/aihub-mmt-integrated-prime-base-300k language: - en - ko - ja - zh pipeline_tag: translation --- ### Pretrained LM - [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) (MIT License) ### Training Dataset - [traintogpb/aihub-mmt-integrated-prime-base-300k](https://huggingface.co/datasets/traintogpb/aihub-mmt-integrated-prime-base-300k) - Can translate in Korean <-> English / Japanese / Chinese (Korean-centered translation) ### Prompt - Template: ```python # one of 'src_lang' and 'tgt_lang' should be "한국어" src_lang = "English" # English, 한국어, 日本語, 中文 tgt_lang = "한국어" # English, 한국어, 日本語, 中文 text = "New era, same empire. T1 is your 2024 Worlds champion!" # task part task_xml_dict = { 'head': "", 'body': f"Translate the source sentence from {src_lang} to {tgt_lang}.\nBe sure to reflect the guidelines below when translating.", 'tail': "" } task = f"{task_xml_dict['head']}\n{task_xml_dict['body']}\n{task_xml_dict['tail']}" # instruction part instruction_xml_dict = { 'head': "", 'body': ["Translate without any condition."], 'tail': "" } instruction_xml_body = '\n'.join([f'- {body}' for body in instruction_xml_dict['body']]) instruction = f"{instruction_xml_dict['head']}\n{instruction_xml_body}\n{instruction_xml_dict['tail']}" # translation part src_xml_dict = { 'head': f"<{src_lang}>", 'body': text.strip(), 'tail': f"" } tgt_xml_dict = { 'head': f"<{LLAMA_LANG_TABLE[tgt_lang]}>", } src = f"{src_xml_dict['head']}\n{src_xml_dict['body']}\n{src_xml_dict['tail']}" tgt = f"{tgt_xml_dict['head']}\n" translation_xml_dict = { 'head': "", 'body': f"{src}\n{tgt}", } translation = f"{translation_xml_dict['head']}\n{translation_xml_dict['body']}" # final prompt prompt = f"{task}\n\n{instruction}\n\n{translation}" ``` - Example Input: ``` Translate the source sentence from English to 한국어. Be sure to reflect the guidelines below when translating. - Translate without any condition. New era, same empire. T1 is your 2024 Worlds champion! <한국어> ``` - Expected Output: ``` 새로운 시대, 여전한 왕조. 티원이 2024 월즈의 챔피언입니다! ``` Model will generate the XML end tags. ### Training - Trained with LoRA adapter - PLM: bfloat16 - Adapter: bfloat16 - Adapted to all the linear layers (around 2.05%) ### Usage (IMPORTANT) - Should remove the EOS token at the end of the prompt. ```python # MODEL model_name = 'beomi/Llama-3-Open-Ko-8B' adapter_name = 'traintogpb/llama-3-mmt-xml-it-sft-adapter' model = AutoModelForCausalLM.from_pretrained( model_name, max_length=4096, attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16, ) model = PeftModel.from_pretrained( model, adapter_path=adapter_name, torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained(adapter_name) tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different text = "New era, same empire. T1 is your 2024 Worlds champion!" input_prompt = " ~ <{tgt_lang}>" # prompt with the template above inputs = tokenizer(input_prompt, max_length=2000, truncation=True, return_tensors='pt') if inputs['input_ids'][0][-1] == tokenizer.eos_token_id: inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) outputs = model.generate(**inputs, max_length=2000, eos_token_id=tokenizer.eos_token_id) input_len = len(inputs['input_ids'].squeeze()) translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) print(translation) ``` ### Framework versions - PEFT 0.8.2