---
library_name: peft
base_model:
- beomi/Llama-3-Open-Ko-8B
license: mit
datasets:
- traintogpb/aihub-mmt-integrated-prime-base-300k
language:
- en
- ko
- ja
- zh
pipeline_tag: translation
---
### Pretrained LM
- [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) (MIT License)
### Training Dataset
- [traintogpb/aihub-mmt-integrated-prime-base-300k](https://huggingface.co/datasets/traintogpb/aihub-mmt-integrated-prime-base-300k)
- Can translate in Korean <-> English / Japanese / Chinese (Korean-centered translation)
### Prompt
- Template:
```python
# one of 'src_lang' and 'tgt_lang' should be "한국어"
src_lang = "English" # English, 한국어, 日本語, 中文
tgt_lang = "한국어" # English, 한국어, 日本語, 中文
text = "New era, same empire. T1 is your 2024 Worlds champion!"
# task part
task_xml_dict = {
'head': "",
'body': f"Translate the source sentence from {src_lang} to {tgt_lang}.\nBe sure to reflect the guidelines below when translating.",
'tail': ""
}
task = f"{task_xml_dict['head']}\n{task_xml_dict['body']}\n{task_xml_dict['tail']}"
# instruction part
instruction_xml_dict = {
'head': "",
'body': ["Translate without any condition."],
'tail': ""
}
instruction_xml_body = '\n'.join([f'- {body}' for body in instruction_xml_dict['body']])
instruction = f"{instruction_xml_dict['head']}\n{instruction_xml_body}\n{instruction_xml_dict['tail']}"
# translation part
src_xml_dict = {
'head': f""
}
tgt_xml_dict = {
'head': f"<{LLAMA_LANG_TABLE[tgt_lang]}>",
}
src = f"{src_xml_dict['head']}\n{src_xml_dict['body']}\n{src_xml_dict['tail']}"
tgt = f"{tgt_xml_dict['head']}\n"
translation_xml_dict = {
'head': "",
'body': f"{src}\n{tgt}",
}
translation = f"{translation_xml_dict['head']}\n{translation_xml_dict['body']}"
# final prompt
prompt = f"{task}\n\n{instruction}\n\n{translation}"
```
- Example Input:
```
Translate the source sentence from English to 한국어.
Be sure to reflect the guidelines below when translating.
- Translate without any condition.
<한국어>
```
- Expected Output:
```
새로운 시대, 여전한 왕조. 티원이 2024 월즈의 챔피언입니다!
한국어>
```
Model will generate the XML end tags.
### Training
- Trained with LoRA adapter
- PLM: bfloat16
- Adapter: bfloat16
- Adapted to all the linear layers (around 2.05%)
### Usage (IMPORTANT)
- Should remove the EOS token at the end of the prompt.
```python
# MODEL
model_name = 'beomi/Llama-3-Open-Ko-8B'
adapter_name = 'traintogpb/llama-3-mmt-xml-it-sft-adapter'
model = AutoModelForCausalLM.from_pretrained(
model_name,
max_length=4096,
attn_implementation='flash_attention_2',
torch_dtype=torch.bfloat16,
)
model = PeftModel.from_pretrained(
model,
adapter_path=adapter_name,
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(adapter_name)
tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different
text = "New era, same empire. T1 is your 2024 Worlds champion!"
input_prompt = " ~ <{tgt_lang}>" # prompt with the template above
inputs = tokenizer(input_prompt, max_length=2000, truncation=True, return_tensors='pt')
if inputs['input_ids'][0][-1] == tokenizer.eos_token_id:
inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
outputs = model.generate(**inputs, max_length=2000, eos_token_id=tokenizer.eos_token_id)
input_len = len(inputs['input_ids'].squeeze())
translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True)
print(translation)
```
### Framework versions
- PEFT 0.8.2