Upload Job_Recommendation_System.ipynb
Browse files- Job_Recommendation_System.ipynb +884 -0
Job_Recommendation_System.ipynb
ADDED
@@ -0,0 +1,884 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "_NrjL2ccH3yp"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"RECOMMENDATION MODEL"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 1,
|
15 |
+
"metadata": {
|
16 |
+
"id": "IZfnA6W_GDyf"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import numpy as np\n",
|
21 |
+
"import pandas as pd\n",
|
22 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
23 |
+
"from sklearn.metrics.pairwise import cosine_similarity"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {
|
30 |
+
"id": "MV-7idG1F_NU"
|
31 |
+
},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"# Mock data creation\n",
|
35 |
+
"def create_mock_data():\n",
|
36 |
+
" users_data = \"1st_train.csv\"\n",
|
37 |
+
" # \"/content/sample_data/train_train.csv\"\n",
|
38 |
+
" applicants = pd.read_csv(users_data)\n",
|
39 |
+
"\n",
|
40 |
+
" jobs_data = \"jobs_data.csv\"\n",
|
41 |
+
" companies = pd.read_csv(jobs_data)\n",
|
42 |
+
"\n",
|
43 |
+
" train_applicants = applicants\n",
|
44 |
+
" test_data = \"1st_test.csv\"\n",
|
45 |
+
" # \"/content/sample_data/test_train.csv\"\n",
|
46 |
+
" test_applicants = pd.read_csv(test_data)\n",
|
47 |
+
"\n",
|
48 |
+
" return train_applicants, test_applicants, companies"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 6,
|
54 |
+
"metadata": {
|
55 |
+
"id": "4VTpcXhz-5TN"
|
56 |
+
},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"# @title\n",
|
60 |
+
"# # Mock data creation\n",
|
61 |
+
"# def create_mock_data():\n",
|
62 |
+
"# users_data = \"/content/sample_data/rematch_train_candidate_field.csv\"\n",
|
63 |
+
"# applicants = pd.read_csv(users_data)\n",
|
64 |
+
"\n",
|
65 |
+
"# jobs_data = \"/content/sample_data/jobs_data.csv\"\n",
|
66 |
+
"# companies = pd.read_csv(jobs_data)\n",
|
67 |
+
"\n",
|
68 |
+
"# # train_applicants = applicants\n",
|
69 |
+
"# # test_data = \"/content/sample_data/test_data_new.csv\"\n",
|
70 |
+
"# # test_applicants = pd.read_csv(test_data)\n",
|
71 |
+
"\n",
|
72 |
+
"# train_applicants = applicants[:10000]\n",
|
73 |
+
"# test_applicants = applicants[10000:]\n",
|
74 |
+
"\n",
|
75 |
+
"# return train_applicants, test_applicants, companies"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 3,
|
81 |
+
"metadata": {
|
82 |
+
"id": "wF1oZ6Ez96BE"
|
83 |
+
},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"train_user, test_user, jobs = create_mock_data()"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 4,
|
92 |
+
"metadata": {
|
93 |
+
"colab": {
|
94 |
+
"base_uri": "https://localhost:8080/"
|
95 |
+
},
|
96 |
+
"id": "Gj8tJNrph8Go",
|
97 |
+
"outputId": "a44b8cf0-a56f-4cd2-bbda-ca9bcabf35a0"
|
98 |
+
},
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"name": "stdout",
|
102 |
+
"output_type": "stream",
|
103 |
+
"text": [
|
104 |
+
"Training data size: 18979\n",
|
105 |
+
"Test data size: 4745\n"
|
106 |
+
]
|
107 |
+
}
|
108 |
+
],
|
109 |
+
"source": [
|
110 |
+
"print(\"Training data size:\", train_user.shape[0])\n",
|
111 |
+
"print(\"Test data size:\", test_user.shape[0])"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 5,
|
117 |
+
"metadata": {
|
118 |
+
"id": "d0XY4al7K0UT"
|
119 |
+
},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"list_hard_skill = [test_user[\"hard_skill\"].iloc[i].replace(\"[\", \"\").replace(\"]\", \"\").replace(\"'\", \"\") for i in range(len(test_user))]\n",
|
123 |
+
"list_soft_skill = [test_user[\"soft_skill\"].iloc[i].replace(\"[\", \"\").replace(\"]\", \"\").replace(\"'\", \"\") for i in range(len(test_user))]"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 6,
|
129 |
+
"metadata": {
|
130 |
+
"colab": {
|
131 |
+
"base_uri": "https://localhost:8080/",
|
132 |
+
"height": 213
|
133 |
+
},
|
134 |
+
"id": "JOZ9_NlLK8uS",
|
135 |
+
"outputId": "17d09f55-192f-4486-bb47-b56f525d44a3"
|
136 |
+
},
|
137 |
+
"outputs": [
|
138 |
+
{
|
139 |
+
"data": {
|
140 |
+
"text/html": [
|
141 |
+
"<div>\n",
|
142 |
+
"<style scoped>\n",
|
143 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
144 |
+
" vertical-align: middle;\n",
|
145 |
+
" }\n",
|
146 |
+
"\n",
|
147 |
+
" .dataframe tbody tr th {\n",
|
148 |
+
" vertical-align: top;\n",
|
149 |
+
" }\n",
|
150 |
+
"\n",
|
151 |
+
" .dataframe thead th {\n",
|
152 |
+
" text-align: right;\n",
|
153 |
+
" }\n",
|
154 |
+
"</style>\n",
|
155 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
156 |
+
" <thead>\n",
|
157 |
+
" <tr style=\"text-align: right;\">\n",
|
158 |
+
" <th></th>\n",
|
159 |
+
" <th>User ID</th>\n",
|
160 |
+
" <th>candidate_field</th>\n",
|
161 |
+
" <th>label</th>\n",
|
162 |
+
" <th>hard_skill</th>\n",
|
163 |
+
" <th>soft_skill</th>\n",
|
164 |
+
" <th>final_hard_skill</th>\n",
|
165 |
+
" <th>final_soft_skill</th>\n",
|
166 |
+
" </tr>\n",
|
167 |
+
" </thead>\n",
|
168 |
+
" <tbody>\n",
|
169 |
+
" <tr>\n",
|
170 |
+
" <th>0</th>\n",
|
171 |
+
" <td>14649</td>\n",
|
172 |
+
" <td>it jobs</td>\n",
|
173 |
+
" <td>1</td>\n",
|
174 |
+
" <td>['act', 'advertising sales', 'algorithms', 'bu...</td>\n",
|
175 |
+
" <td>['collaboration', 'decision making', 'operatio...</td>\n",
|
176 |
+
" <td>act, advertising sales, algorithms, business, ...</td>\n",
|
177 |
+
" <td>collaboration, decision making, operations, wr...</td>\n",
|
178 |
+
" </tr>\n",
|
179 |
+
" <tr>\n",
|
180 |
+
" <th>1</th>\n",
|
181 |
+
" <td>801</td>\n",
|
182 |
+
" <td>marketing</td>\n",
|
183 |
+
" <td>0</td>\n",
|
184 |
+
" <td>['act', 'brand communication', 'business', 'bu...</td>\n",
|
185 |
+
" <td>['collaboration', 'customer service', 'managem...</td>\n",
|
186 |
+
" <td>act, brand communication, business, business d...</td>\n",
|
187 |
+
" <td>collaboration, customer service, management</td>\n",
|
188 |
+
" </tr>\n",
|
189 |
+
" <tr>\n",
|
190 |
+
" <th>2</th>\n",
|
191 |
+
" <td>4393</td>\n",
|
192 |
+
" <td>accounting</td>\n",
|
193 |
+
" <td>0</td>\n",
|
194 |
+
" <td>['application', 'balance sheet', 'finance', 'p...</td>\n",
|
195 |
+
" <td>['filing', 'management']</td>\n",
|
196 |
+
" <td>application, balance sheet, finance, property ...</td>\n",
|
197 |
+
" <td>filing, management</td>\n",
|
198 |
+
" </tr>\n",
|
199 |
+
" </tbody>\n",
|
200 |
+
"</table>\n",
|
201 |
+
"</div>"
|
202 |
+
],
|
203 |
+
"text/plain": [
|
204 |
+
" User ID candidate_field label \\\n",
|
205 |
+
"0 14649 it jobs 1 \n",
|
206 |
+
"1 801 marketing 0 \n",
|
207 |
+
"2 4393 accounting 0 \n",
|
208 |
+
"\n",
|
209 |
+
" hard_skill \\\n",
|
210 |
+
"0 ['act', 'advertising sales', 'algorithms', 'bu... \n",
|
211 |
+
"1 ['act', 'brand communication', 'business', 'bu... \n",
|
212 |
+
"2 ['application', 'balance sheet', 'finance', 'p... \n",
|
213 |
+
"\n",
|
214 |
+
" soft_skill \\\n",
|
215 |
+
"0 ['collaboration', 'decision making', 'operatio... \n",
|
216 |
+
"1 ['collaboration', 'customer service', 'managem... \n",
|
217 |
+
"2 ['filing', 'management'] \n",
|
218 |
+
"\n",
|
219 |
+
" final_hard_skill \\\n",
|
220 |
+
"0 act, advertising sales, algorithms, business, ... \n",
|
221 |
+
"1 act, brand communication, business, business d... \n",
|
222 |
+
"2 application, balance sheet, finance, property ... \n",
|
223 |
+
"\n",
|
224 |
+
" final_soft_skill \n",
|
225 |
+
"0 collaboration, decision making, operations, wr... \n",
|
226 |
+
"1 collaboration, customer service, management \n",
|
227 |
+
"2 filing, management "
|
228 |
+
]
|
229 |
+
},
|
230 |
+
"execution_count": 6,
|
231 |
+
"metadata": {},
|
232 |
+
"output_type": "execute_result"
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"source": [
|
236 |
+
"test_user[\"final_hard_skill\"] = pd.DataFrame(list_hard_skill)\n",
|
237 |
+
"test_user[\"final_soft_skill\"] = pd.DataFrame(list_soft_skill)\n",
|
238 |
+
"test_user.head(3)"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 7,
|
244 |
+
"metadata": {
|
245 |
+
"id": "kYbjYsDjABda"
|
246 |
+
},
|
247 |
+
"outputs": [],
|
248 |
+
"source": [
|
249 |
+
"list_hard_skill = [train_user[\"hard_skill\"].iloc[i].replace(\"[\", \"\").replace(\"]\", \"\").replace(\"'\", \"\") for i in range(len(train_user))]\n",
|
250 |
+
"list_soft_skill = [train_user[\"soft_skill\"].iloc[i].replace(\"[\", \"\").replace(\"]\", \"\").replace(\"'\", \"\") for i in range(len(train_user))]"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 8,
|
256 |
+
"metadata": {
|
257 |
+
"colab": {
|
258 |
+
"base_uri": "https://localhost:8080/",
|
259 |
+
"height": 213
|
260 |
+
},
|
261 |
+
"id": "GC8bn3cjB8D5",
|
262 |
+
"outputId": "436e843d-425e-4ce2-e551-e4f249bdd10b"
|
263 |
+
},
|
264 |
+
"outputs": [
|
265 |
+
{
|
266 |
+
"data": {
|
267 |
+
"text/html": [
|
268 |
+
"<div>\n",
|
269 |
+
"<style scoped>\n",
|
270 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
271 |
+
" vertical-align: middle;\n",
|
272 |
+
" }\n",
|
273 |
+
"\n",
|
274 |
+
" .dataframe tbody tr th {\n",
|
275 |
+
" vertical-align: top;\n",
|
276 |
+
" }\n",
|
277 |
+
"\n",
|
278 |
+
" .dataframe thead th {\n",
|
279 |
+
" text-align: right;\n",
|
280 |
+
" }\n",
|
281 |
+
"</style>\n",
|
282 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
283 |
+
" <thead>\n",
|
284 |
+
" <tr style=\"text-align: right;\">\n",
|
285 |
+
" <th></th>\n",
|
286 |
+
" <th>User ID</th>\n",
|
287 |
+
" <th>candidate_field</th>\n",
|
288 |
+
" <th>label</th>\n",
|
289 |
+
" <th>hard_skill</th>\n",
|
290 |
+
" <th>soft_skill</th>\n",
|
291 |
+
" <th>final_hard_skill</th>\n",
|
292 |
+
" <th>final_soft_skill</th>\n",
|
293 |
+
" </tr>\n",
|
294 |
+
" </thead>\n",
|
295 |
+
" <tbody>\n",
|
296 |
+
" <tr>\n",
|
297 |
+
" <th>0</th>\n",
|
298 |
+
" <td>3030</td>\n",
|
299 |
+
" <td>sales</td>\n",
|
300 |
+
" <td>0</td>\n",
|
301 |
+
" <td>['blogs', 'business', 'lead generation', 'mark...</td>\n",
|
302 |
+
" <td>['customer service', 'driven personality', 'ma...</td>\n",
|
303 |
+
" <td>blogs, business, lead generation, marketing st...</td>\n",
|
304 |
+
" <td>customer service, driven personality, manageme...</td>\n",
|
305 |
+
" </tr>\n",
|
306 |
+
" <tr>\n",
|
307 |
+
" <th>1</th>\n",
|
308 |
+
" <td>9702</td>\n",
|
309 |
+
" <td>administration & office support</td>\n",
|
310 |
+
" <td>0</td>\n",
|
311 |
+
" <td>['business', 'draft', 'go', 'manufacturing', '...</td>\n",
|
312 |
+
" <td>['business acumen', 'communications', 'managem...</td>\n",
|
313 |
+
" <td>business, draft, go, manufacturing, office man...</td>\n",
|
314 |
+
" <td>business acumen, communications, management, o...</td>\n",
|
315 |
+
" </tr>\n",
|
316 |
+
" <tr>\n",
|
317 |
+
" <th>2</th>\n",
|
318 |
+
" <td>8606</td>\n",
|
319 |
+
" <td>retail & consumer products</td>\n",
|
320 |
+
" <td>0</td>\n",
|
321 |
+
" <td>['gross profit', 'inventory', 'inventory manag...</td>\n",
|
322 |
+
" <td>['customer service', 'management']</td>\n",
|
323 |
+
" <td>gross profit, inventory, inventory management,...</td>\n",
|
324 |
+
" <td>customer service, management</td>\n",
|
325 |
+
" </tr>\n",
|
326 |
+
" </tbody>\n",
|
327 |
+
"</table>\n",
|
328 |
+
"</div>"
|
329 |
+
],
|
330 |
+
"text/plain": [
|
331 |
+
" User ID candidate_field label \\\n",
|
332 |
+
"0 3030 sales 0 \n",
|
333 |
+
"1 9702 administration & office support 0 \n",
|
334 |
+
"2 8606 retail & consumer products 0 \n",
|
335 |
+
"\n",
|
336 |
+
" hard_skill \\\n",
|
337 |
+
"0 ['blogs', 'business', 'lead generation', 'mark... \n",
|
338 |
+
"1 ['business', 'draft', 'go', 'manufacturing', '... \n",
|
339 |
+
"2 ['gross profit', 'inventory', 'inventory manag... \n",
|
340 |
+
"\n",
|
341 |
+
" soft_skill \\\n",
|
342 |
+
"0 ['customer service', 'driven personality', 'ma... \n",
|
343 |
+
"1 ['business acumen', 'communications', 'managem... \n",
|
344 |
+
"2 ['customer service', 'management'] \n",
|
345 |
+
"\n",
|
346 |
+
" final_hard_skill \\\n",
|
347 |
+
"0 blogs, business, lead generation, marketing st... \n",
|
348 |
+
"1 business, draft, go, manufacturing, office man... \n",
|
349 |
+
"2 gross profit, inventory, inventory management,... \n",
|
350 |
+
"\n",
|
351 |
+
" final_soft_skill \n",
|
352 |
+
"0 customer service, driven personality, manageme... \n",
|
353 |
+
"1 business acumen, communications, management, o... \n",
|
354 |
+
"2 customer service, management "
|
355 |
+
]
|
356 |
+
},
|
357 |
+
"execution_count": 8,
|
358 |
+
"metadata": {},
|
359 |
+
"output_type": "execute_result"
|
360 |
+
}
|
361 |
+
],
|
362 |
+
"source": [
|
363 |
+
"train_user[\"final_hard_skill\"] = pd.DataFrame(list_hard_skill)\n",
|
364 |
+
"train_user[\"final_soft_skill\"] = pd.DataFrame(list_soft_skill)\n",
|
365 |
+
"train_user.head(3)"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "code",
|
370 |
+
"execution_count": 9,
|
371 |
+
"metadata": {
|
372 |
+
"id": "znBy9q8XDcM7"
|
373 |
+
},
|
374 |
+
"outputs": [],
|
375 |
+
"source": [
|
376 |
+
"list_hard_skill = [jobs[\"Hard Skills\"].iloc[i].replace(\"[\", \"\").replace(\"]\", \"\").replace(\"'\", \"\") for i in range(len(jobs))]\n",
|
377 |
+
"list_soft_skill = [jobs[\"Soft Skills\"].iloc[i].replace(\"[\", \"\").replace(\"]\", \"\").replace(\"'\", \"\") for i in range(len(jobs))]"
|
378 |
+
]
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"cell_type": "code",
|
382 |
+
"execution_count": 10,
|
383 |
+
"metadata": {
|
384 |
+
"colab": {
|
385 |
+
"base_uri": "https://localhost:8080/",
|
386 |
+
"height": 213
|
387 |
+
},
|
388 |
+
"id": "knFii8o3EQmv",
|
389 |
+
"outputId": "47afb484-0765-4ad9-8765-d084673450ac"
|
390 |
+
},
|
391 |
+
"outputs": [
|
392 |
+
{
|
393 |
+
"data": {
|
394 |
+
"text/html": [
|
395 |
+
"<div>\n",
|
396 |
+
"<style scoped>\n",
|
397 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
398 |
+
" vertical-align: middle;\n",
|
399 |
+
" }\n",
|
400 |
+
"\n",
|
401 |
+
" .dataframe tbody tr th {\n",
|
402 |
+
" vertical-align: top;\n",
|
403 |
+
" }\n",
|
404 |
+
"\n",
|
405 |
+
" .dataframe thead th {\n",
|
406 |
+
" text-align: right;\n",
|
407 |
+
" }\n",
|
408 |
+
"</style>\n",
|
409 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
410 |
+
" <thead>\n",
|
411 |
+
" <tr style=\"text-align: right;\">\n",
|
412 |
+
" <th></th>\n",
|
413 |
+
" <th>Job ID</th>\n",
|
414 |
+
" <th>Major</th>\n",
|
415 |
+
" <th>Hard Skills</th>\n",
|
416 |
+
" <th>Soft Skills</th>\n",
|
417 |
+
" <th>final_hard_skill</th>\n",
|
418 |
+
" <th>final_soft_skill</th>\n",
|
419 |
+
" </tr>\n",
|
420 |
+
" </thead>\n",
|
421 |
+
" <tbody>\n",
|
422 |
+
" <tr>\n",
|
423 |
+
" <th>0</th>\n",
|
424 |
+
" <td>1</td>\n",
|
425 |
+
" <td>accounting</td>\n",
|
426 |
+
" <td>['business', 'finance', 'excel', 'tax', 'servi...</td>\n",
|
427 |
+
" <td>['management', 'planning', 'operations', 'lead...</td>\n",
|
428 |
+
" <td>business, finance, excel, tax, service, data, ...</td>\n",
|
429 |
+
" <td>management, planning, operations, leadership, ...</td>\n",
|
430 |
+
" </tr>\n",
|
431 |
+
" <tr>\n",
|
432 |
+
" <th>1</th>\n",
|
433 |
+
" <td>2</td>\n",
|
434 |
+
" <td>administration & office support</td>\n",
|
435 |
+
" <td>['service', 'business', 'data', 'excel', 'appl...</td>\n",
|
436 |
+
" <td>['management', 'customer service', 'microsoft ...</td>\n",
|
437 |
+
" <td>service, business, data, excel, application, s...</td>\n",
|
438 |
+
" <td>management, customer service, microsoft office...</td>\n",
|
439 |
+
" </tr>\n",
|
440 |
+
" <tr>\n",
|
441 |
+
" <th>2</th>\n",
|
442 |
+
" <td>3</td>\n",
|
443 |
+
" <td>advertising, arts & media</td>\n",
|
444 |
+
" <td>['business', 'digital', 'sales', 'service', 'a...</td>\n",
|
445 |
+
" <td>['management', 'social media', 'writing', 'com...</td>\n",
|
446 |
+
" <td>business, digital, sales, service, application...</td>\n",
|
447 |
+
" <td>management, social media, writing, communicati...</td>\n",
|
448 |
+
" </tr>\n",
|
449 |
+
" </tbody>\n",
|
450 |
+
"</table>\n",
|
451 |
+
"</div>"
|
452 |
+
],
|
453 |
+
"text/plain": [
|
454 |
+
" Job ID Major \\\n",
|
455 |
+
"0 1 accounting \n",
|
456 |
+
"1 2 administration & office support \n",
|
457 |
+
"2 3 advertising, arts & media \n",
|
458 |
+
"\n",
|
459 |
+
" Hard Skills \\\n",
|
460 |
+
"0 ['business', 'finance', 'excel', 'tax', 'servi... \n",
|
461 |
+
"1 ['service', 'business', 'data', 'excel', 'appl... \n",
|
462 |
+
"2 ['business', 'digital', 'sales', 'service', 'a... \n",
|
463 |
+
"\n",
|
464 |
+
" Soft Skills \\\n",
|
465 |
+
"0 ['management', 'planning', 'operations', 'lead... \n",
|
466 |
+
"1 ['management', 'customer service', 'microsoft ... \n",
|
467 |
+
"2 ['management', 'social media', 'writing', 'com... \n",
|
468 |
+
"\n",
|
469 |
+
" final_hard_skill \\\n",
|
470 |
+
"0 business, finance, excel, tax, service, data, ... \n",
|
471 |
+
"1 service, business, data, excel, application, s... \n",
|
472 |
+
"2 business, digital, sales, service, application... \n",
|
473 |
+
"\n",
|
474 |
+
" final_soft_skill \n",
|
475 |
+
"0 management, planning, operations, leadership, ... \n",
|
476 |
+
"1 management, customer service, microsoft office... \n",
|
477 |
+
"2 management, social media, writing, communicati... "
|
478 |
+
]
|
479 |
+
},
|
480 |
+
"execution_count": 10,
|
481 |
+
"metadata": {},
|
482 |
+
"output_type": "execute_result"
|
483 |
+
}
|
484 |
+
],
|
485 |
+
"source": [
|
486 |
+
"jobs[\"final_hard_skill\"] = pd.DataFrame(list_hard_skill)\n",
|
487 |
+
"jobs[\"final_soft_skill\"] = pd.DataFrame(list_soft_skill)\n",
|
488 |
+
"jobs.head(3)"
|
489 |
+
]
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"cell_type": "code",
|
493 |
+
"execution_count": 14,
|
494 |
+
"metadata": {
|
495 |
+
"id": "wiDiHL6lStnd"
|
496 |
+
},
|
497 |
+
"outputs": [],
|
498 |
+
"source": [
|
499 |
+
"# Feature Engineering\n",
|
500 |
+
"def feature_engineering(applicants, companies):\n",
|
501 |
+
" # Vectorize skills and majors\n",
|
502 |
+
" tfidf_vectorizer_skills = TfidfVectorizer()\n",
|
503 |
+
" tfidf_vectorizer_majors = TfidfVectorizer()\n",
|
504 |
+
"\n",
|
505 |
+
" all_skills = pd.concat([applicants['final_hard_skill'], applicants['final_soft_skill'],\n",
|
506 |
+
" companies['final_hard_skill'], companies['final_soft_skill']])\n",
|
507 |
+
" all_majors = pd.concat([applicants['candidate_field'], companies['Major']])\n",
|
508 |
+
"\n",
|
509 |
+
" all_skills_vectorized = tfidf_vectorizer_skills.fit_transform(all_skills)\n",
|
510 |
+
" all_majors_vectorized = tfidf_vectorizer_majors.fit_transform(all_majors)\n",
|
511 |
+
"\n",
|
512 |
+
" num_applicants = len(applicants)\n",
|
513 |
+
" num_companies = len(companies)\n",
|
514 |
+
"\n",
|
515 |
+
" # Split the TF-IDF vectors back into applicants and companies\n",
|
516 |
+
" applicants_skills_vectorized = all_skills_vectorized[:num_applicants*2] # because each applicant has 2 skill entries\n",
|
517 |
+
" companies_skills_vectorized = all_skills_vectorized[num_applicants*2:]\n",
|
518 |
+
"\n",
|
519 |
+
" applicants_majors_vectorized = all_majors_vectorized[:num_applicants]\n",
|
520 |
+
" companies_majors_vectorized = all_majors_vectorized[num_applicants:]\n",
|
521 |
+
"\n",
|
522 |
+
" return (applicants_skills_vectorized, applicants_majors_vectorized,\n",
|
523 |
+
" companies_skills_vectorized, companies_majors_vectorized, tfidf_vectorizer_skills, tfidf_vectorizer_majors)"
|
524 |
+
]
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"cell_type": "code",
|
528 |
+
"execution_count": 15,
|
529 |
+
"metadata": {
|
530 |
+
"id": "THM0mszQGNyD"
|
531 |
+
},
|
532 |
+
"outputs": [],
|
533 |
+
"source": [
|
534 |
+
"def compute_similarity(applicants_skills_vectorized, applicants_majors_vectorized,\n",
|
535 |
+
" companies_skills_vectorized, companies_majors_vectorized):\n",
|
536 |
+
" # Calculate similarity based on skills (averaging hard and soft skills similarities)\n",
|
537 |
+
" applicants_skills = (applicants_skills_vectorized[0::2] + applicants_skills_vectorized[1::2]) / 2\n",
|
538 |
+
" companies_skills = (companies_skills_vectorized[0::2] + companies_skills_vectorized[1::2]) / 2\n",
|
539 |
+
"\n",
|
540 |
+
" skills_similarity = cosine_similarity(applicants_skills, companies_skills)\n",
|
541 |
+
"\n",
|
542 |
+
" # Calculate similarity based on majors\n",
|
543 |
+
" majors_similarity = cosine_similarity(applicants_majors_vectorized, companies_majors_vectorized)\n",
|
544 |
+
"\n",
|
545 |
+
" # Ensure the number of companies in both similarities is aligned\n",
|
546 |
+
" if skills_similarity.shape[1] != majors_similarity.shape[1]:\n",
|
547 |
+
" min_dim = min(skills_similarity.shape[1], majors_similarity.shape[1])\n",
|
548 |
+
" skills_similarity = skills_similarity[:, :min_dim]\n",
|
549 |
+
" majors_similarity = majors_similarity[:, :min_dim]\n",
|
550 |
+
"\n",
|
551 |
+
" # Combine these similarities (simple average for this example)\n",
|
552 |
+
" combined_similarity = (skills_similarity + majors_similarity) / 2\n",
|
553 |
+
" return combined_similarity"
|
554 |
+
]
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"cell_type": "code",
|
558 |
+
"execution_count": 16,
|
559 |
+
"metadata": {
|
560 |
+
"id": "ter3YAzxoelD"
|
561 |
+
},
|
562 |
+
"outputs": [],
|
563 |
+
"source": [
|
564 |
+
"# Recommendation Function\n",
|
565 |
+
"def recommend_jobs(applicants, companies, similarity_scores):\n",
|
566 |
+
" recommendations = {}\n",
|
567 |
+
" for i, applicant in enumerate(applicants['User ID']):\n",
|
568 |
+
" if i < len(similarity_scores):\n",
|
569 |
+
" sorted_company_indices = np.argsort(-similarity_scores[i]) # Descending sort of scores\n",
|
570 |
+
" recommended_companies = companies.iloc[sorted_company_indices]['Major'].values[:3] # Top 3 recommendations\n",
|
571 |
+
" recommendations[applicant] = recommended_companies\n",
|
572 |
+
" return recommendations\n",
|
573 |
+
"\n",
|
574 |
+
"# Testing and Evaluation Function\n",
|
575 |
+
"def print_recommendations(applicants, companies, recommendations):\n",
|
576 |
+
" # This is a mock function since we don't have ground truth to compare to.\n",
|
577 |
+
" # In a real scenario, we would compare against actual matches or use some form of feedback.\n",
|
578 |
+
" print(\"Recommendations for each applicant:\")\n",
|
579 |
+
" for applicant in recommendations:\n",
|
580 |
+
" print(f\"{applicant}: {recommendations[applicant]}\")"
|
581 |
+
]
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"cell_type": "code",
|
585 |
+
"execution_count": null,
|
586 |
+
"metadata": {
|
587 |
+
"colab": {
|
588 |
+
"base_uri": "https://localhost:8080/"
|
589 |
+
},
|
590 |
+
"collapsed": true,
|
591 |
+
"id": "Ajxp0xelIrl2",
|
592 |
+
"outputId": "08bafc5b-73cc-4695-924a-931840047dd5"
|
593 |
+
},
|
594 |
+
"outputs": [],
|
595 |
+
"source": [
|
596 |
+
"# Let's create and process the data, and compute recommendations\n",
|
597 |
+
"# train_applicants, test_applicants, companies = create_mock_data()\n",
|
598 |
+
"applicants_skills_vec, applicants_majors_vec, companies_skills_vec, companies_majors_vec, tfidf_vectorizer_skills, tfidf_vectorizer_majors = feature_engineering(train_user, jobs)\n",
|
599 |
+
"\n",
|
600 |
+
"similarity_scores = compute_similarity(applicants_skills_vec, applicants_majors_vec, companies_skills_vec, companies_majors_vec)\n",
|
601 |
+
"recommendations = recommend_jobs(test_user, jobs, similarity_scores)\n",
|
602 |
+
"\n",
|
603 |
+
"# Output the recommendations to observe the results\n",
|
604 |
+
"print_recommendations(test_user, jobs, recommendations)"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"cell_type": "code",
|
609 |
+
"execution_count": 23,
|
610 |
+
"metadata": {
|
611 |
+
"colab": {
|
612 |
+
"base_uri": "https://localhost:8080/"
|
613 |
+
},
|
614 |
+
"id": "nj-HEdyJlYNY",
|
615 |
+
"outputId": "063b84bc-5717-4a0c-8367-939a054657bc"
|
616 |
+
},
|
617 |
+
"outputs": [
|
618 |
+
{
|
619 |
+
"name": "stdout",
|
620 |
+
"output_type": "stream",
|
621 |
+
"text": [
|
622 |
+
"Recommended Jobs based on input skills and major:\n",
|
623 |
+
"['sales' 'it jobs' 'administration & office support']\n"
|
624 |
+
]
|
625 |
+
}
|
626 |
+
],
|
627 |
+
"source": [
|
628 |
+
"# Process input skills and recommend jobs\n",
|
629 |
+
"def recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, jobs, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec):\n",
|
630 |
+
" input_hard_skills_vec = tfidf_vectorizer_skills.transform([input_hard_skills])\n",
|
631 |
+
" input_soft_skills_vec = tfidf_vectorizer_skills.transform([input_soft_skills])\n",
|
632 |
+
" input_major_vec = tfidf_vectorizer_majors.transform([input_major])\n",
|
633 |
+
"\n",
|
634 |
+
" # Average the vectorized hard and soft skills\n",
|
635 |
+
" input_skills_vec = (input_hard_skills_vec + input_soft_skills_vec) / 2\n",
|
636 |
+
"\n",
|
637 |
+
" # Compute similarities\n",
|
638 |
+
" skills_similarity = cosine_similarity(input_skills_vec, companies_skills_vec)\n",
|
639 |
+
" major_similarity = cosine_similarity(input_major_vec, companies_majors_vec)\n",
|
640 |
+
"\n",
|
641 |
+
" # Ensure the number of companies in both similarities is aligned\n",
|
642 |
+
" if skills_similarity.shape[1] != major_similarity.shape[1]:\n",
|
643 |
+
" min_dim = min(skills_similarity.shape[1], major_similarity.shape[1])\n",
|
644 |
+
" skills_similarity = skills_similarity[:, :min_dim]\n",
|
645 |
+
" major_similarity = major_similarity[:, :min_dim]\n",
|
646 |
+
"\n",
|
647 |
+
" # Combine similarities\n",
|
648 |
+
" combined_similarity = (skills_similarity + major_similarity) / 2\n",
|
649 |
+
"\n",
|
650 |
+
" # Get top 3 job recommendations\n",
|
651 |
+
" sorted_company_indices = np.argsort(-combined_similarity[0])\n",
|
652 |
+
" recommended_companies = jobs.iloc[sorted_company_indices]['Major'].values[:3]\n",
|
653 |
+
"\n",
|
654 |
+
" return recommended_companies\n",
|
655 |
+
"\n",
|
656 |
+
"\"\"\"TEST RECOMMENDED SYSTEM\"\"\"\n",
|
657 |
+
"\n",
|
658 |
+
"input_hard_skills = \"Java, Excel, Python\"\n",
|
659 |
+
"input_soft_skills = \"Communication, Teamwork\"\n",
|
660 |
+
"input_major = \"Sales\"\n",
|
661 |
+
"\n",
|
662 |
+
"recommended_jobs = recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, jobs, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec)\n",
|
663 |
+
"print(\"Recommended Jobs based on input skills and major:\")\n",
|
664 |
+
"print(recommended_jobs)"
|
665 |
+
]
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"cell_type": "markdown",
|
669 |
+
"metadata": {
|
670 |
+
"id": "IMTilMnQINZC"
|
671 |
+
},
|
672 |
+
"source": [
|
673 |
+
"TEST RECOMMENDED SYSTEM"
|
674 |
+
]
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"cell_type": "markdown",
|
678 |
+
"metadata": {
|
679 |
+
"id": "kShd99z_NiTa"
|
680 |
+
},
|
681 |
+
"source": [
|
682 |
+
"Evaluating (PENDING)"
|
683 |
+
]
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"cell_type": "code",
|
687 |
+
"execution_count": null,
|
688 |
+
"metadata": {
|
689 |
+
"id": "WfEgjqw9JE3l"
|
690 |
+
},
|
691 |
+
"outputs": [],
|
692 |
+
"source": [
|
693 |
+
"def create_ground_truth(csv_file_path):\n",
|
694 |
+
" data = pd.read_csv(csv_file_path)\n",
|
695 |
+
"\n",
|
696 |
+
" # Tạo dictionary `ground_truth`\n",
|
697 |
+
" ground_truth = {}\n",
|
698 |
+
" for index, row in data.iterrows():\n",
|
699 |
+
" user_id = row['User ID']\n",
|
700 |
+
" actual_major = row['candidate_field']\n",
|
701 |
+
"\n",
|
702 |
+
" # Thêm vào dictionary, giả sử mỗi ứng viên chỉ chọn một công việc\n",
|
703 |
+
" ground_truth[user_id] = [actual_major]\n",
|
704 |
+
"\n",
|
705 |
+
" return ground_truth\n",
|
706 |
+
"\n",
|
707 |
+
"# Sử dụng hàm trên để tạo `ground_truth`\n",
|
708 |
+
"csv_file_path = '/content/sample_data/1st_test.csv'\n",
|
709 |
+
"ground_truth = create_ground_truth(csv_file_path)"
|
710 |
+
]
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"cell_type": "code",
|
714 |
+
"execution_count": null,
|
715 |
+
"metadata": {
|
716 |
+
"colab": {
|
717 |
+
"base_uri": "https://localhost:8080/",
|
718 |
+
"height": 1000
|
719 |
+
},
|
720 |
+
"collapsed": true,
|
721 |
+
"id": "TRiD4oS-AKFE",
|
722 |
+
"outputId": "256fadeb-b250-4602-affb-005cb9c658eb"
|
723 |
+
},
|
724 |
+
"outputs": [],
|
725 |
+
"source": [
|
726 |
+
"display(ground_truth)"
|
727 |
+
]
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"cell_type": "code",
|
731 |
+
"execution_count": null,
|
732 |
+
"metadata": {
|
733 |
+
"colab": {
|
734 |
+
"base_uri": "https://localhost:8080/"
|
735 |
+
},
|
736 |
+
"id": "pXsa_wbANjmb",
|
737 |
+
"outputId": "9bd4fc1e-781b-439c-fe35-c28769f6714c"
|
738 |
+
},
|
739 |
+
"outputs": [
|
740 |
+
{
|
741 |
+
"name": "stdout",
|
742 |
+
"output_type": "stream",
|
743 |
+
"text": [
|
744 |
+
"Average Precision@3 with 18979 trains and 4745 tests: 0.1252546540217773\n"
|
745 |
+
]
|
746 |
+
}
|
747 |
+
],
|
748 |
+
"source": [
|
749 |
+
"def precision_at_k(recommendations, ground_truth, k=3):\n",
|
750 |
+
" \"\"\"\n",
|
751 |
+
" Calculate the precision at k for recommendation system.\n",
|
752 |
+
"\n",
|
753 |
+
" Parameters:\n",
|
754 |
+
" - recommendations (dict): Dictionary where keys are user IDs and values are lists of recommended majors.\n",
|
755 |
+
" - ground_truth (dict): Dictionary where keys are user IDs and values are lists of truly suitable majors.\n",
|
756 |
+
" - k (int): The number of top recommendations to consider for calculating precision.\n",
|
757 |
+
"\n",
|
758 |
+
" Returns:\n",
|
759 |
+
" - float: The average precision at k for all users.\n",
|
760 |
+
" \"\"\"\n",
|
761 |
+
" precision_scores = []\n",
|
762 |
+
"\n",
|
763 |
+
" for applicant, recommended_major in recommendations.items():\n",
|
764 |
+
" if applicant in ground_truth:\n",
|
765 |
+
" # Get top k recommendations\n",
|
766 |
+
" top_k_recs = recommended_major[:k]\n",
|
767 |
+
" # Calculate the number of relevant recommendations\n",
|
768 |
+
" relevant_recs = sum(1 for major in top_k_recs if major in ground_truth[applicant])\n",
|
769 |
+
" # Precision at k for this user\n",
|
770 |
+
" precision = relevant_recs / k\n",
|
771 |
+
" precision_scores.append(precision)\n",
|
772 |
+
"\n",
|
773 |
+
" # Average precision at k over all users\n",
|
774 |
+
" average_precision = np.mean(precision_scores) if precision_scores else 0\n",
|
775 |
+
" return average_precision\n",
|
776 |
+
"\n",
|
777 |
+
"avg_precision = precision_at_k(recommendations, ground_truth)\n",
|
778 |
+
"print(\"Average Precision@3 with 18979 trains and 4745 tests:\", avg_precision)"
|
779 |
+
]
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"cell_type": "code",
|
783 |
+
"execution_count": null,
|
784 |
+
"metadata": {
|
785 |
+
"colab": {
|
786 |
+
"base_uri": "https://localhost:8080/"
|
787 |
+
},
|
788 |
+
"id": "KAIvtKEaRQml",
|
789 |
+
"outputId": "7dd82dc6-0e1b-43d5-bc95-cb457cde5d72"
|
790 |
+
},
|
791 |
+
"outputs": [
|
792 |
+
{
|
793 |
+
"name": "stdout",
|
794 |
+
"output_type": "stream",
|
795 |
+
"text": [
|
796 |
+
"Average Recall@3 with 18979 trains and 4745 tests: 0.3757639620653319\n"
|
797 |
+
]
|
798 |
+
}
|
799 |
+
],
|
800 |
+
"source": [
|
801 |
+
"def recall_at_k(recommendations, ground_truth, k=3):\n",
|
802 |
+
" recall_scores = []\n",
|
803 |
+
"\n",
|
804 |
+
" for user_id, recommended_majors in recommendations.items():\n",
|
805 |
+
" if user_id in ground_truth:\n",
|
806 |
+
" # Get top k recommendations\n",
|
807 |
+
" top_k_recs = recommended_majors[:k]\n",
|
808 |
+
" # Calculate the number of relevant recommendations\n",
|
809 |
+
" relevant_recs = sum(1 for major in top_k_recs if major in ground_truth[user_id])\n",
|
810 |
+
" # Calculate the total number of relevant items\n",
|
811 |
+
" total_relevant = len(ground_truth[user_id])\n",
|
812 |
+
" # Recall at k for this user\n",
|
813 |
+
" recall = relevant_recs / total_relevant if total_relevant else 0\n",
|
814 |
+
" recall_scores.append(recall)\n",
|
815 |
+
"\n",
|
816 |
+
" # Average recall at k over all users\n",
|
817 |
+
" average_recall = sum(recall_scores) / len(recall_scores) if recall_scores else 0\n",
|
818 |
+
" return average_recall\n",
|
819 |
+
"\n",
|
820 |
+
"# Example usage:\n",
|
821 |
+
"avg_recall = recall_at_k(recommendations, ground_truth)\n",
|
822 |
+
"print(\"Average Recall@3 with 18979 trains and 4745 tests:\", avg_recall)\n"
|
823 |
+
]
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"cell_type": "code",
|
827 |
+
"execution_count": null,
|
828 |
+
"metadata": {
|
829 |
+
"colab": {
|
830 |
+
"base_uri": "https://localhost:8080/"
|
831 |
+
},
|
832 |
+
"id": "QUHBsQS_-5Eu",
|
833 |
+
"outputId": "fdab3075-dab8-458e-e663-2564b20da97c"
|
834 |
+
},
|
835 |
+
"outputs": [
|
836 |
+
{
|
837 |
+
"name": "stdout",
|
838 |
+
"output_type": "stream",
|
839 |
+
"text": [
|
840 |
+
"Average F1 Score@3: 0.18788198103266596\n"
|
841 |
+
]
|
842 |
+
}
|
843 |
+
],
|
844 |
+
"source": [
|
845 |
+
"def f1_score_at_k(recommendations, ground_truth, k=3):\n",
|
846 |
+
" precision = precision_at_k(recommendations, ground_truth, k)\n",
|
847 |
+
" recall = recall_at_k(recommendations, ground_truth, k)\n",
|
848 |
+
"\n",
|
849 |
+
" if precision + recall == 0:\n",
|
850 |
+
" return 0\n",
|
851 |
+
"\n",
|
852 |
+
" f1_score = 2 * (precision * recall) / (precision + recall)\n",
|
853 |
+
" return f1_score\n",
|
854 |
+
"\n",
|
855 |
+
"avg_f1_score = f1_score_at_k(recommendations, ground_truth)\n",
|
856 |
+
"\n",
|
857 |
+
"print(\"Average F1 Score@3:\", avg_f1_score)"
|
858 |
+
]
|
859 |
+
}
|
860 |
+
],
|
861 |
+
"metadata": {
|
862 |
+
"colab": {
|
863 |
+
"provenance": []
|
864 |
+
},
|
865 |
+
"kernelspec": {
|
866 |
+
"display_name": "Python 3",
|
867 |
+
"name": "python3"
|
868 |
+
},
|
869 |
+
"language_info": {
|
870 |
+
"codemirror_mode": {
|
871 |
+
"name": "ipython",
|
872 |
+
"version": 3
|
873 |
+
},
|
874 |
+
"file_extension": ".py",
|
875 |
+
"mimetype": "text/x-python",
|
876 |
+
"name": "python",
|
877 |
+
"nbconvert_exporter": "python",
|
878 |
+
"pygments_lexer": "ipython3",
|
879 |
+
"version": "3.11.2"
|
880 |
+
}
|
881 |
+
},
|
882 |
+
"nbformat": 4,
|
883 |
+
"nbformat_minor": 0
|
884 |
+
}
|